
Robotics and Autonomous Systems 100 (2018) 236–250

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Reset-free Trial-and-Error Learning for Robot Damage Recovery
Konstantinos Chatzilygeroudis, Vassilis Vassiliades, Jean-Baptiste Mouret *
Inria, Villers-lès-Nancy, F-54600, France
CNRS, Loria, UMR 7503, Vandœuvre-lès-Nancy, F-54500, France
Université de Lorraine, Loria, UMR 7503, Vandœuvre-lès-Nancy, F-54500, France

h i g h l i g h t s

• RTE makes it possible for complex robots to quickly recover from damage.
• It is a trial-and-error learning approach that considers the environment.
• It does not require the robot to be reset to the same state after each trial.
• It breaks the complexity by pre-generating hundreds of possible behaviors.
• It allowed a damaged 6-legged robot to learn to walk in an arena with obstacles.

a r t i c l e i n f o

Article history:
Received 15 April 2017
Received in revised form 13 October 2017
Accepted 21 November 2017
Available online 2 December 2017

Keywords:
Robot damage recovery
Autonomous systems
Robotics
Trial-and-Error learning
Reinforcement learning

a b s t r a c t

The high probability of hardware failures prevents many advanced robots (e.g., legged robots) from
being confidently deployed in real-world situations (e.g., post-disaster rescue). Instead of attempting to
diagnose the failures, robots could adapt by trial-and-error in order to be able to complete their tasks. In
this situation, damage recovery can be seen as a Reinforcement Learning (RL) problem. However, the best
RL algorithms for robotics require the robot and the environment to be reset to an initial state after each
episode, that is, the robot is not learning autonomously. In addition,most of the RLmethods for robotics do
not scale well with complex robots (e.g., walking robots) and either cannot be used at all or take too long
to converge to a solution (e.g., hours of learning). In this paper, we introduce a novel learning algorithm
called ‘‘Reset-free Trial-and-Error’’ (RTE) that (1) breaks the complexity by pre-generating hundreds of
possible behaviorswith a dynamics simulator of the intact robot, and (2) allows complex robots to quickly
recover from damagewhile completing their tasks and taking the environment into account.We evaluate
our algorithm on a simulated wheeled robot, a simulated six-legged robot, and a real six-legged walking
robot that are damaged in several ways (e.g., a missing leg, a shortened leg, faulty motor, etc.) and whose
objective is to reach a sequence of targets in an arena. Our experiments show that the robots can recover
most of their locomotion abilities in an environmentwith obstacles, andwithout any human intervention.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

During the recent DARPA Robotics Challenge (2015), many
robots had to be ‘‘rescued’’ by humans because of hardware fail-
ures [1], which is paradoxical for robots that were designed to
operate in environments that are too risky for humans. While
these robots could certainly have been more robust and some falls
prevented, even the best robots will encounter unforeseen situa-
tions: hardware failureswill always be a possibility, especiallywith
highly complex robots in complex environments [2]. For instance,
C. Atkeson et al. report that the Atlas robot they used in the DARPA

* Corresponding author.
E-mail addresses: konstantinos.chatzilygeroudis@inria.fr (K. Chatzilygeroudis),

vassilis.vassiliades@inria.fr (V. Vassiliades), jean-baptiste.mouret@inria.fr
(J.-B. Mouret).

Robotics challenge had a ‘‘mean time between failures of hours or,
at most, days’’ [1,3].

The traditional method for damage recovery is to first diagnose
the failure, then update the plans to bypass it [4–6]. Nevertheless,
conceptually, the probability of failing grows exponentially with
the complexity of the robot (e.g., a Roomba vs a humanoid) and the
environment (e.g., an empty arena vs a post-earthquake building);
accurate diagnosis, therefore, becomesmuchmore challenging and
requires many more internal sensors, which, in turn, increase the
complexity and the cost of robots.

To overcome these challenges, robots can avoid the diagnosis
step and directly learn a compensatory behavior by trial-and-
error [7–9]. In this case, damage recovery is a reinforcement learn-
ing (RL) problem in which the robot has to maximize its perfor-
mance for the task at hand in spite of being damaged [10]. The most
successful traditional RL methods typically learn an action-value

https://doi.org/10.1016/j.robot.2017.11.010
0921-8890/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.robot.2017.11.010
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2017.11.010&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:konstantinos.chatzilygeroudis@inria.fr
mailto:vassilis.vassiliades@inria.fr
mailto:jean-baptiste.mouret@inria.fr
https://doi.org/10.1016/j.robot.2017.11.010
http://creativecommons.org/licenses/by/4.0/


K. Chatzilygeroudis et al. / Robotics and Autonomous Systems 100 (2018) 236–250 237

Fig. 1. A typical experiment with the Reset-free Trial-and-Error (RTE) algorithm.
A. A 6-legged (hexapod) robot is damaged; i.e., missing a leg. B. The robot uses RTE
to learn how to compensate while completing its task and taking into account the
environment. As the robot moves, it improves its performance, i.e., it needs fewer
episodes to reach the next target.

function that the agent consults to select the best action from each
state (i.e., one that maximizes long-term reward) [11,12]. These
methodsworkwell in discrete action spaces (and even betterwhen
combined with discrete state spaces), but robots are typically con-
trolledwith continuous inputs and outputs (see [10,13] for detailed
discussions on the issues of classic RL methods in robotics).

As a result, the most promising approaches to RL for robot
control do not rely on value functions; instead, they are policy
search methods that learn parameters of a controller, called the
policy, that maps sensor inputs to joint positions/torque [13].
Thesemethodsmake it possible to use policies that are well-suited
for robot control such as dynamic movement primitives [14] or
general-purpose neural networks [15]. In direct policy search, the
algorithms view learning as an optimization problem that can
be solved with gradient-based or black-box optimization algo-
rithms [16]. As they are not modeling the robot itself, these algo-
rithms scale well with the dimensionality of the state space. They
still encounter difficulties, however, as the number of parameters
which define a policy, and thus the dimensionality of the search
space, increases [13]. In model-based policy search, the algorithms
typically alternate between learning a model of the robot and
learning a policy using the learnedmodel [17,18]. As they optimize
policies without interacting with the robot, these algorithms not
only scalewell with the number of parameters, but can also be very
data efficient, requiring few trials on the robot itself to develop a
policy. They do not scale well with the dimensionality of the state
space, however, as the complexity of the dynamics tends to scale
exponentially with the number of moving components.

In addition to scaling, another limitation of most of the current
RLmethods used in robotics is that after each trial, the robot needs
to be reset to the same state [10,19]. While this reset is often
not a problem for a manipulator, it prevents mobile robots (e.g., a
stranded mobile manipulator or a legged robot) from exploiting
this kind of algorithms to recover from damage in real-world
situations. The robot cannot ignore its environmentwhile learning,
which is usually the case, as it may be further damaged if it makes
a wrong decision. For example, if the robot is in front of a wall and
needs to try a new way to move, it should not try to go forward,
but it should select actions that wouldmake it more likely tomove
backwards in order to avoid hitting the wall.

An ideal damage recovery algorithm should therefore (1) not
need any reset between episodes, (2) scale well enough with re-
spect to the dimensionality of the state/action space of the robot, so
that it can be used for ‘‘complex’’ robots (e.g., legged robots) with
the computing resources that are typically embedded in modern
robots, and (3) explicitly take into account the environment. The

objective of the present paper is to introduce a reinforcement learning
algorithm that fits these three requirements by exploiting specific
features of the damage recovery problem.

More precisely, we investigate a simplified scenario that cap-
tures these challenges: a waypoint-controlled robot is damaged in
a way that is unknown to its operator (e.g., a leg is partially cut
or a motor working at half speed); to get out of the building, the
robot must recover its locomotion abilities so that it can reach the
waypoints fixed by its operator. Our objective is to have the robot
recover its locomotive abilities to the maximum extent possible in
the shortest amount of time (Fig. 1). We assume that no diagnosis
is available or that the diagnosis failed, either because the robot
lacks the right sensor or because the damage is so out of the
ordinary that it cannot be properly diagnosed. For simplicity, we
also assume that the environment is known to the robot; we will
discuss possible extensions of our approachwhen the environment
is unknown in the discussion section.

Our first source of inspiration is the recently introduced Intel-
ligent Trial and Error (IT&E) algorithm [7]. This algorithm is an
episodic policy search algorithm that is specifically designed for
damage recovery. It addresses the scaling challenge by assuming
that some high-performing policies for the intact robot still work
on the damaged robot. While this assumption does not always
hold, empirical experiments show that it often holds with highly
redundant robots (e.g., legged robots or humanoids) [7,8] because
(1) there are often many ways to perform a task, and (2) the
outcomes of behaviors that do not use the damaged parts are
similar between the intact and the damaged robot. Using this
assumption, IT&E searches for a diverse set of high-performing
policies before themission (offline), then performs the online search,
that is, the adaptation to damage, by searching solely in this lower-
dimensional set of pre-selected policies (using Bayesian optimiza-
tion) [7]. As a result,most of the trials required for the policy search
are transferred from the real damaged robot, which can perform
only a few trials, to simulations with the intact robot, which can
perform many more trials, especially on modern computing clus-
ters. For instance, IT&E allows an 18-DOF hexapod robot to learn
to walk after several injuries within a dozen episodes [7] and only
two minutes of combined interaction and computation time.

A second source of inspiration is the recent AlphaGo algorithm
that succeeded in beating the European and World champions in
the game of Go [20]. Essentially, the authors use deep learning to
pre-compute default policies and initial values for a Monte Carlo
Tree Search (MCTS) [21] algorithm that plans (approximately) the
best next action to take. We can draw an analogy in robotics
and pre-compute actions or policies, learn the model of the robot
on-line (the physical robot is damaged) and use MCTS to select
the most promising action. Interestingly, MCTS can also take into
account the uncertainty of the prediction of the model of the en-
vironment (e.g., when using Gaussian processes for models [22]).
Unfortunately, it seems unrealistic to learn a probabilistic model
of the full dynamics of a walking robot (like in [23]) within a few
seconds (or minutes) of interaction time and the on-board compu-
tational power of a typical robot; more importantly, a probabilistic
planner that would plan in the full controller space is even more
computationally demanding.

Our main idea is to adapt the pre-computing part of IT&E, so
that it can be used by aMCTS-based planner to select the next trial,
in place of the Bayesian optimization used in IT&E. In addition, we
utilize a probabilistic model to learn how to correct the outcome
of each action on the damaged robot and use the MCTS-based
planner in a similar way as in AlphaGo [20] and the TEXPLORE
algorithm [23], but also incorporating the uncertainty of themodel
prediction in the search. This allows us to propose a trial-and-
error learning algorithm for damage recovery that can work on a
real hexapod robot, within reasonable computation time (less than



Download English Version:

https://daneshyari.com/en/article/6867371

Download Persian Version:

https://daneshyari.com/article/6867371

Daneshyari.com

https://daneshyari.com/en/article/6867371
https://daneshyari.com/article/6867371
https://daneshyari.com

