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h i g h l i g h t s

• An algorithm is proposed to compute a hierarchy of polytopes in the grasp wrench set.
• The polytope hierarchy provides a list of facets from the interior of the grasp wrench set to its boundary.
• The minimum contact force for grasping can be quickly computed by searching the facet list.
• The online computation of contact force distribution needs less than one millisecond on a normal PC.
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a b s t r a c t

This paper presents an efficient approach to contact force distribution, which is aimed at computing
optimal contact forces to generate the required wrench for grasping an object. It has been derived in
the previous work that this problem can be reduced to computing the intersection of the ray originating
from the origin along the required wrench with the boundary of the grasp wrench set. Noticing that
the grasp wrench set is fixed once contact positions are determined, we propose an algorithm to pre-
compute a hierarchy of polytopes in the grasp wrench set and a list of facets from the interior of the
grasp wrench set to its boundary. Then, the ray’s intersection can be quickly found by searching the list
of facets and optimal contact forces can be computed in real time. Numerical examples show that the
online computation of the proposed approach is one order of magnitude faster than the latest algorithm
to compute the ray’s intersection and two orders of magnitude faster than general-purpose optimization
algorithms. This approach to contact force distribution is an iterative solution that can run until reaching
a desired accuracy.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

While a multifingered robot hand is used to grasp an object, it
is required to determine the force that each contact applies to the
object such that the resultant wrench from all the contact forces
resists the other wrenches applied to the object. This problem is
known as contact force distribution (CFD). Due to the existence
of multiple contacts and the underdetermined nature of the prob-
lem, there is an infinite number of distributions of forces among
contacts that produce the same resultant wrench. This provides
the freedom to optimize the contact forces based on certain cri-
teria, such as minimizing their magnitudes or inclination angles.
Moreover, each contact force must satisfy the friction constraint to
prevent undesired motions at contact. Hence, the CFD problem is
essentially a constrained optimization problem.

In the previous work, a majority of efforts have been spent
on formulating the CFD problem as optimization problems in
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special forms that facilitate the use of the existing optimization
algorithms. By replacing the quadratic friction cone with a poly-
hedral cone, the friction constraint can be written as a set of
linear inequalities so that the resulting optimization problem be-
comes a linear program [1,2] or a quadric program with linear
inequality constraints [3–5]. Also, it was observed that the friction
constraint is equivalent to the positive definiteness of a matrix [6].
Based on this observation, the CFD problem was formulated as a
semidefinite programming problem with linear matrix inequali-
ties [7–9], which can be more efficiently solved by the existing
convex programming algorithms. In order to further expedite a
general-purpose optimization algorithm applied to this problem,
the structure of constraints and the selection of initial conditions,
step size, and stopping criteria were also explored in the above
works. Comparative tests of these algorithms were reported in
the work [10]. More recently, Gazeau et al. [4] reduced the CFD
problem into a minimal distance problem and solved it with a
gradient projection method. Cornellà et al. [5] proposed a similar
formulation but solved its dual form instead of the primal form.

https://doi.org/10.1016/j.robot.2017.10.014
0921-8890/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.robot.2017.10.014
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2017.10.014&domain=pdf
mailto:yuuzheng@umich.edu
https://doi.org/10.1016/j.robot.2017.10.014


98 Y. Zheng / Robotics and Autonomous Systems 99 (2018) 97–109

Fig. 1. Diagram of the proposed approach to contact force distribution (CFD). The
three inputs to Algorithm 1 are assumed to be already known and Algorithm 1
pre-computes a hierarchy of polytopes in the grasp wrench set. Using the polytope
hierarchy, Algorithm 2 computes the minimum contact forces with respect to the
required wrench, which is dynamically changing, for manipulating the grasped
object.

Boyd and Wegbreit [11] proposed an interior-point algorithm to
compute CFD as a second-order cone problem.

Another category of approaches to CFD is based on the discovery
that computing the minimum contact forces can be reduced to a
geometric problem called ray-shooting [2], which computes the
intersection of a ray with the boundary of a convex set. Specific
geometric algorithms were proposed for this problem and shown
to possess higher computational efficiency than general-purpose
optimization algorithms to compute CFD [12,13].

Aiming to the real-time applicability, some approaches divide
the entire computation of contact forces into offline and online
phases and try to pre-calculate certain quantities in the offline
phase that can facilitate the online computation of final contact
forces [14–17].

The approach proposed in this paper falls in the last category
and is intended for the casewhere the contact positions are known
offline and the contact forces need to be computed online with
respect to the requiredwrench formanipulating the grasped object
to change its position andorientationwithout changing the contact
positions. It follows from the discovery that the CFD problem
can be reduced to computing the intersection of a ray with the
boundary of the grasp wrench set [2]. Since the contact positions
are known and do not change later, the grasp wrench set is fixed.
Then, this approach first offline calculates a hierarchy of polytopes
with a list of facets from the interior of the grasp wrench set to its
boundary. By doing this, the ray’s intersection can be quickly found
online by searching the facet list and the minimum contact forces
can be computed in real time. A diagram of the proposed approach
is shown in Fig. 1. By this approach, the online computation takes
less than one millisecond on a normal PC, which is one to two
orders of magnitude faster than the geometric algorithms [12,13]
or general-purpose optimization algorithms that need perform
online iteration to compute the ray’s intersection or minimum
contact forces. The accuracy of the resulting minimum contact
forces is determined by the established polytope hierarchy, which
is computed by an iterative procedure to gradually expand a poly-
tope inside the grasp wrench set. The procedure can iterate until
the final expanded polytope is sufficiently close to the boundary of
the grasp wrench set such that the final result can reach a desired
accuracy.

The rest of this paper is organized as follows. Section 2 intro-
duces the CFD problem and related results from the previouswork.
Section 3 presents our approach followed by numerical examples
in Section 4. Section 5 concludes this paper.

2. Preliminaries

2.1. Basic knowledge and problem statement

Assume that a multifingered robot hand grasps an object by
m contacts. In order to resist the other wrenches (i.e., forces and

moments) applied to the object and maintain it in the mechanical
equilibrium, the resultant wrench wres from all the contact forces
must be the negative of the external wrench wext (sum of the
otherwrenches) [18],which canbewritten in the object coordinate
frame as

wres =

m∑
i=1

G if i = −wext, (1)

where G i =
[ni oi t i 0
pi × ni pi × oi pi × t i ni

]
is the matrix converting

the contact force f i at contact i (i = 1, 2, . . . ,m) into the wrench
with respect to the object coordinate frame, pi is the contact
position vector, andni,oi, t i are theunit normal and twoorthogonal
unit tangent vectors at contact i with respect to the object coor-
dinate frame. We consider the soft-finger contact model [18,19],
for which the contact force f i = [fi1 fi2 fi3 fi4]T comprises four
components, namely three pure force components fi1, fi2, fi3 along
ni, oi, t i, respectively, and a spin moment fi4 about ni. To maintain
a stable contact, f i must stay within the friction cone [18]

Fi ≜
{
f i ∈ R4

| fi1 ≥ 0,

√
f 2i2 + f 2i3

µ2
i
+

f 2i4
µ2

si
≤ fi1

}
, (2)

where µi and µsi are the tangential and torsional friction coeffi-
cients, respectively. The soft-finger contact model is more mathe-
matically general such that the rigid contactmodelwith orwithout
friction can be treated as its special cases. Thus, the approach
proposed in this paper can be naturally applied to graspswith rigid
contacts.

The goal of contact force distribution is to compute contact
forces f i ∈ Fi, i = 1, 2, . . . ,m to generate the requiredwrenchwres
in (1). Since there are usually more contacts than necessary, there
is an infinite number of feasible solutions for f i and the contact
forces can be distributed such that their magnitude is minimal. It
should be noted that the last force component fi4 is a spin moment
and has a different unit from the other force components fi1, fi2, fi3,
which are pure forces. Then, the Euclidean norm of f i would mix
quantities with different units and does not make physical sense.
Therefore, the magnitude of a contact force f i, denoted by ∥f i∥, is
defined as one of the following two quantities, which essentially
are the infinity norm and a weighted norm of f i, respectively:

∥f i∥ ≜ fi1, (3a)

∥f i∥ ≜
√
f 2i1 + f 2i2 + f 2i3 + µ2

i f
2
i4/µ

2
si. (3b)

Since the other force components have been constrained by fi1
in the friction constraint (2), most of the previous work chose
the definition (3a), which is also easier to calculate than the non-
linear formulation (3b). The overall magnitude of contact forces
f i, i = 1, 2, . . . ,m is often defined in one of the following two
forms, i.e., the sum or the maximum of normal force components
[6,8,11]

σ ≜

m∑
i=1

∥f i∥, (4a)

σ ≜ max
i=1,2,...,m

∥f i∥. (4b)

From (3) and (4) there are actually four different definitions of
overall contact force magnitude. The approach proposed in this
paper can work with any of those, as shown in Section 2.2.

2.2. Results from the previous work

It has been derived that the computing of f i ∈ Fi, i =
1, 2, . . . ,m with the minimum magnitude σ ∗ can be reduced to
computing the intersection of the ray R originating from the origin
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