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h i g h l i g h t s

• The problem of fusing sensor modalities with significantly different sampling rates in a mobile robot localization system is addressed.
• A heuristic approach to include a low-rate position increment modality is proposed.
• The proposed approach is grounded with respect to a standard Rauch–Tung–Striebel smoother for the Kalman filter.
• Performance of the proposed approach is experimentally evaluated and selected fail-cases are discussed.
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a b s t r a c t

Localization of mobile robots is still an important topic, especially in case of dynamically changing,
complex environments such as in Urban Search & Rescue (USAR). In this paper we aim for improving the
reliability and precision of localization of our multimodal data fusion algorithm. Multimodal data fusion
requires resolving several issues such as significantly different sampling frequencies of the individual
modalities. We compare our proposed solution with the well-proven and popular Rauch–Tung–Striebel
smoother for the Extended Kalman filter. Furthermore, we improve the precision of our data fusion by
incorporating scale estimation for the visual modality.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For successful deployment of mobile robots to complex
dynamically changing environments, such as those typical for
Urban Search & Rescue (USAR), reliable localization is crucial. In
modern mobile robots, a popular solution lies in the combination
of proprioceptive sensors, usually in form of an integrated Inertial
Navigation System (INS), that captures the body dynamics at high
rate, and an external source of aiding, using either vision [1] or
range measurements [2]. Since most of the solutions are based
on the well-proven Extended Kalman filter (EKF) [1,2], the state
estimation architecture we designed for our platform (see Fig. 1) is
based on the error state EKF framework as well.1
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Aswe have shown in [3] (results of thiswork are summarized in
Sections 3.1 and 3.2), performing data fusion of various modalities
– such as in our case the inertial data, track odometry, visual
odometry, and laser-basedmapping – provides satisfactory results
even when exposed to harsh environmental conditions, which can
cause some of the modalities to fail. There is a number of well
known problems connected with each named modality. First, the
track odometry is strongly susceptible to high slippage, especially
in skid-steer robots such as ours [4]. Second, it is the drift of
the inertial sensors caused primarily by integrating the sensor
noise, misalignment and instrumental errors. Third, the sensitivity
to illumination and lack of scene texture influence the visual
odometry performance [5]. And fourth, the laser-based mapping
is sensitive to dynamic changes and to the overall geometric
structure of the environment [6,7]. We addressed all these issues
in [3] and introduced a failure-case methodology for evaluation
of our multimodal data fusion. In this methodology we invoke
challenging conditions that cause different modalities to fail on
purpose and hence allow us to properly evaluate the robustness
of localization.

However, our currently published results [3] raised a question
that motivated us into a more in-depth research of the critical
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Fig. 1. TRADR1 robotic platform at the USAR training site of the fire brigade of Dortmund, Germany. Robot sensor suite is highly configurable, includes Point Grey Ladybug3
omni-directional camera and SICK LMS-151 laser range-finder, can be extended further by various cameras (left) or a robotic arm (right).

issue of significantly different sampling frequencies of individual
modalities. This is in general relevant to all multimodal data
fusion algorithms, regardless a platform type. In this paper we
therefore present ourmost recent results and compare them to the
popular and commonly used standard smoother for Kalman filters.
We have chosen the Rauch–Tung–Striebel smoother (RTS) [8]
for the EKF as a representative of the Kalman smoothers family.
By its definition, RTS best fits our data fusion scenario since it
allows to recompute past position estimates based on information
introduced by low-rate position increment measurements. We
therefore exploited the RTS as benchmark for our multimodal data
fusion architecture. For this purpose, we exploit our multimodal
dataset2 [3], which includes precise ground truth for both position
and orientation obtained using a Vicon tracking system.

Our contribution is twofold. Due to experimental comparison
and analysis, we were able to ground our novel approach to
fusing multiple modalities at significantly different sampling
rates with respect to the RTS smoother for EKF (described in
Section 3.4). We hence offer our solution as an alternative to this
popular RTS smoother, whether intended for robotics application
or multimodal data fusion in general. Secondarily, with respect
to our previous results, we improved the multimodal data fusion
by incorporating velocity information from the visual odometry
and resolved the scale problem for processing panoramic images
(Section 3.3).

The paper is structured as follows: Section 2 introduces the
related work, Section 3 sums up our previous work, describes
our new proposed solutions and presents them in the context of
smoothers for the EKF. Section 4 summarizes the experimental
evaluation and Section 5 concludes the implications of our work.

2. Related work

Regarding the multi-modal data fusion, we built on our
previous results described in [3], especially the design of the EKF
error models [9–11]—even though the later work concerned a
legged robot.

If long-term reliability and good accuracy are required,
dead-reckoning solutions – such as those based on IMU and
odometry – need other exteroceptive aiding modalities. In [12]
it is shown that an IMU based dead reckoning system can be
realized and successfully combined with the visual odometry to
produce a reliable navigation system. We include visual odometry
measurements into the EKF fusion scheme as well, yet directly
in a form of angular and translational velocities computed by a
more general implementation of visual odometry [5] designed for

2 This dataset has been already released to the robotics community at
https://sites.google.com/site/kubelvla/public-datasets/nifti-zurich-2013.

an omni-directional camera (note that in [12], the problem of
tracking visual features is simplified by using a marker for planar
homography).

Besides the visual odometry, another typical sensor for aiding
is the laser range-finder. The laser range-finders are usually used
for estimating vehicle motion by matching consecutive laser scans
and thus creating ametric map of the environment [6,7]. Examples
of successful deployment can be found for indoor – without IMU
but combined with vision [13] – as well as for outdoor—relying
only on the IMU [2]. The most popular approach of scan matching
is based on the Iterative Closest Point (ICP) algorithm, which was
first proposed by [14,15]. Later, [16] proposed a 6D Simultaneous
Localization and Mapping (SLAM) system relying primarily on the
ICP. Work of [17] proposed a localization system combining a 2D
laser SLAMwith a 3D IMU/odometry-based navigation subsystem.
Contrary to the later publications realized in the context of SLAM,
we only consider the output of the ICP algorithm3 as a local pose
measurements—similarly aswith the visual odometry,we treat the
laser localization module as a velocity sensor.

Solutions exploiting the EKF for fusing the dead reckoning with
exteroceptive sensors are very popular [1,2,19–21]; our fusion
scheme is based on the EKF as well. Still, a number of problems
arise in multimodal data fusion. The problem of utilizing several
sensors for localization, which may provide contradictory mea-
surements, is discussed in [22]. The authors use Bayes filters to
estimate sensor measurement uncertainty and hence evaluate the
sensor validity. We separately addressed this problem in [10],
where we utilized machine-learning techniques to detect anoma-
lous measurements.

Since we aim for grounding our approach with respect to the
smoothers for Kalman filters (in order to smooth the trajectory
estimates), we have chosen the well established RTS [8] for the
EKF as our base reference for benchmarking. Smoothers like RTS
are well proven in the context of localization. In [23] a network
of time-of-flight Cricket sensors provide measurements with a
slight delay; the authors utilize an interactingmultiplemodel fixed
lag smoother to incorporate these delayed measurements. In [24]
indoor localization problem is used to demonstrate properties of a
smoother for the Unscented Kalman Filter. And finally in [25], the
RTS smoother is actually utilized for the SLAMproblem. Smoothing
in Kalman filtering can be applied to wide range of problems,
e.g. work of [26] applies the RTS to improve state estimation of a
dynamic power system.

Several modifications of the RTS smoother have been pro-
posed [27–29] since its original publication [8]. They mainly aim
on better numerical stability and performance of the filter when
deployed on computers with limited precision of number repre-
sentation. We compare our algorithm to the RTS smoother using

3 We use the libpointmatcher implementation of the ICP algorithm [18].
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