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h i g h l i g h t s

• Novel mechanism for the view initialization process in an EKF-based visual SLAM approach.
• An efficient strategy which accounts for information gain and losses.
• Probabilistic representation of features and correlation learning by Gaussian regression.
• Bounding the uncertainty mitigates the non-linear effects which compromise the solution.
• Accuracy and robustness comparison versus a traditional EKF-based SLAM approach.
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a b s t r a c t

This paper presents a novel mechanism to initiate new views within themap building process for an EKF-
based visual SLAM (Simultaneous Localization and Mapping) approach using omnidirectional images.
In presence of non-linearities, the EKF is very likely to compromise the final estimation. Particularly,
the omnidirectional observation model induces non-linear errors, thus it becomes a potential source of
uncertainty. To deal with this issue we propose a novel mechanism for view initialization which accounts
for information gain and lossesmore efficiently. Themain outcome of this contribution is the reduction of
the map uncertainty and thus the higher consistency of the final estimation. Its basis relies on a Gaussian
Process to infer an information distributionmodel from sensor data. This model represents feature points
existence probabilities and their information content analysis leads to the proposed view initialization
scheme. To demonstrate the suitability and effectiveness of the approach we present a series of real data
experiments conducted with a robot equipped with a camera sensor and map model solely based on
omnidirectional views. The results reveal a beneficial reduction on the uncertainty but also on the error
in the pose and the map estimate.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problemof SLAMposes a challenge in the framework ofmo-
bile robot applications. It involves a laborious process that deals
simultaneously with the mapping and robot’s localization. This
fact brings a challenge with regard to complexity, as the proce-
dure is expected to work incrementally and to return a coherent
representation of the environment. Besides, the existence of noise
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sources become accountable for undesired effects which aggravate
and jeopardize the final estimation.

Lately, visual sensors have reached a great emergence as the
main tool for collecting information in the field of SLAM. They rep-
resent a promising option compared to classic sensors such as laser
or sonar. They allow us to take the best advantage of cameras due
to their low cost, light weight and low consumption principally.
Nonetheless, their major benefit turns to be their capability to col-
lect a large amount of visual information. Such a quality is espe-
cially remarkable in the case of omnidirectional cameras, whose
field of view ismaximum.Many approaches have exploited this as-
pect of single cameras by means of visual descriptors to encode 3D
visual landmarks [1–3]. Omnidirectional cameras have also been
used within different contexts successfully [4–6].

http://dx.doi.org/10.1016/j.robot.2015.05.005
0921-8890/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.robot.2015.05.005
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2015.05.005&domain=pdf
mailto:dvaliente@umh.es
mailto:Maani.Ghaffarijadidi@uts.edu.au
mailto:Jaime.VallsMiro@uts.edu.au
mailto:arturo.gil@umh.es
mailto:o.reinoso@umh.es
http://dx.doi.org/10.1016/j.robot.2015.05.005


94 D. Valiente et al. / Robotics and Autonomous Systems 72 (2015) 93–104

Over the last years, great efforts have been made on the study
and research of the EKF-based SLAM methods sustained by visual
sensors [7,1,8,2,9,10]. The main efforts have been concentrated on
the position estimation of a 3D visual landmarks set in a com-
mon reference system. These approaches are liable to encounter
difficulties in assuring the convergence of the solution, particu-
larly in the presence of non-linear errors. Such errors are usually
provoked by sensory input. Omnidirectional sensors are signifi-
cantly susceptible to cause this issue [11], due to its highly non-
linear nature. Their correspondent effects tend to affect severely
the data association problem in SLAM [12]. Other offline algorithms
[13–15] may be seen as an alternative technique to keep stability
under non-linear circumstances for SLAM problems [16]. Within
this last group, there are some other authors who take advantage
of other iterative optimization techniques embedded in the core of
the EKF filter [17,18].

In this approach we rely on an improved version of the EKF
which demonstrates its ability to face these common shortcomings
commented above. In particular, we employ EKF in a non-iterative
way. The most relevant characteristic of this approach is the
definition of the map by omnidirectional images (denoted as
views), which are captured along the path of the robot and stored
with their poses and visual descriptors. This idea is closely related
to the concept of submap. Here, a reduced set of views constitutes a
compact and simpler representation of the environment compared
to traditional 3D landmark map models. The main novelty is a
new mechanism for the initialization of views within the map
building process, aimed at uncertainty reduction. We make use
of the visual information provided by the visual sensor data
in order to construct an information distribution model which
accounts for information gain and losses. This task is carried out
by means of a Gaussian Process (GP), which is included within the
field of non-parametric Bayesian learning techniques. Application
of non-parametric methods, such as GPs has recently proven
great enhancements on the mapping tasks within the context of
autonomous navigation. Continuous frontier maps are obtained
by optimizing the process parameters, which reveal important
uncertainty reduction [19,20]. Therefore, we propose the training
of a GP as a tool to establish a bounded uncertainty scheme
for our approach. By adopting such a technique, we pursue a
positive impact on the uncertainty, which we intend to minimize.
As a result, harmful effects that are likely to appear under high
uncertainty conditions, such as errors induced by non-linearities
and consequently instabilities and convergence difficulties are
mitigated. As a consequence, a more robust and consistent map
and trajectory estimate is obtained for the visual SLAM problem.

Summarizing, the fundamental aspects and contributions of
this approach may be listed as follows:

• A new view initialization mechanism is presented for the map
building process within the problem of EKF-based visual SLAM.

• This strategy accounts for information gain and losses more
efficiently.

• Probabilistic representation of features and learning their
correlations through Gaussian processes regression.

• Bounding the uncertainty leads to the mitigation of harmful
effects induced by non-linearities in the framework of EKF-
based visual SLAM.

This section has introduced the scope and it has also given
a brief outline of the related work. Next, the rest of this paper
has been structured in the following manner: Section 2 briefly
presents the basic theory of an EKF filter within this framework.
Section 3 provides a general explanation to our EKF-based visual
SLAM approach. Next, Section 4 exposes the key points of this
contribution, which is supported by Gaussian Processes and
Information theory. Finally, Section 5 shows the results extracted

from real data experiments. They are aimed at testing the validity
and reliability of this approach in terms of accuracy and robustness,
but they are especially seeking the uncertainty reduction, which
is obviously translated into an improvement on the solution
convergence. Comparison between this proposal and a former
SLAM approach has also been included to support these results.
Further discussion and conclusions are addressed in Section 6.

2. EKF

The principle of the EKF [21] is based on the iterative update
of an augmented state vector which represents the real time
estimate to the problem. Considering our specific visual SLAMcase,
constituted by a view-based map, the estimate returns the pose
of the views in the map and the pose of the robot. Then, the state
vector can be defined as:

x̄(t) = [xv, xl1 , xl2 , . . . , xlN ]
T (1)

where xv represents the current pose of the robot and xlN the
pose of the Nth view in the map. Two linear relations are defined
by F(t) and Hi(t) so as to encode the dependency between x̄(t)
and the observation measurement zi(t) respectively. In addition,
it is essential to bear in mind the information provided by the
odometry of the robot u(t + 1), the uncorrelated Gaussian noise
introduced into the system v(t + 1), and the noise generated by
the sensors, wi(t), being also Gaussian and with covariance R(t).

Three fundamental stages are well differentiated by the EKF
to operate. Firstly, a prediction for x̂(t) and ẑi(t) is proposed.
Then the second stage makes use of this prediction to determine
the deviation between the prior ẑi(t) with respect to the real
observation zi(t). This concept is commonly known as the
innovation, and its meaning is of paramount significance in the
computation of the final solution provided by the filter. Finally, the
third stage takes into account the second stage’s output to produce
the refinement of the estimation obtained during the first stage,
seen as an updating step. These three stages may be described by
their analytic expressions in the following terms:

• Prediction

x̂(t + 1|t) = F(t)x̂(t|t) + u(t) (2)

ẑi(t + 1|t) = Hi(t)x̂(t + 1|t) (3)

P(t + 1|t) = F(t)P(t|t)F T (t) + Q (t) (4)

being P(t|t) and P(t + 1|t) the covariance matrices which
correspond to the uncertainty of the estimation at instants t and
t + 1 respectively. Q (t) is constituted by the noise parameters
which characterize the odometry of the wheels of the vehicle.

• Innovation

vi(t + 1) = zi(t + 1) − ẑi(t + 1|t) (5)

Si(t + 1) = Hi(t)P(t + 1|t)HT
i (t) + Ri(t + 1) (6)

where Si(t + 1) represents the innovation’s covariance.
• Update

x̂(t + 1|t + 1) = x̂(t + 1|t) + Ki(t + 1)vi(t + 1) (7)

P(t + 1|t + 1) = P(t + 1|t) − Ki(t + 1)Si(t + 1)K T
i (t + 1) (8)

being Ki(t + 1) the gain matrix of the filter which plays the role
of weighting. It is computed in the following manner:

Ki(t + 1) = P(t + 1|t)HT
i (t)S−1

i (t + 1). (9)

It is worth noting that Q (t) and R(t) have to be initialized. The
noise parameters which characterize the odometry are introduced
into Q (t) and the experimental accuracy parameters associated
with the visual sensor into R(t). In addition, the odometry u(t) is
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