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h i g h l i g h t s

• A novel Dynamical Systems formulation based on reshaping an existing system is introduced.
• The system can be flexibly reshaped to accommodate demonstrations.
• Stability properties of the original dynamics are retained in the reshaped dynamics.
• Evaluation on several robot manipulation tasks.
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a b s t r a c t

Dynamical Systems (DS) for robot motion modeling are a promising approach for efficient robot learning
and control. Our focus in this paper is on autonomous dynamical systems, which represent a motion plan
without dependency on time. We develop a method that allows to locally reshape an existing, stable
nonlinear autonomous DS while preserving important stability properties of the original system. Our
system is based on local transformations of the dynamics. We propose an incremental learning algorithm
based on Gaussian Processes for learning to reshape dynamical systems using this representation. The
approach is validated in a 2d task of learning handwriting motions, a periodic polishing motion and in a
manipulation task with the 7 degrees of freedom Barrett WAMmanipulator.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A set of preprogrammed behaviors is insufficient for a truly
versatile robot. Alternative solutions should hence be sought to
provide the user with an intuitive interface that can be used to
quickly and efficiently teach the robot new tasks. Robot Learning
from Demonstration (RLfD) addresses this issue by endowing the
robot with the capability to learn tasks from demonstrations [1,2].
The goal is that the user should be able to show the robot how to
perform a task rather than programming it explicitly. A task can
be demonstrated in various ways, e.g. through motion capture or
Kinesthetic teaching. After a set of demonstrations has been col-
lected, these are typically used for optimizing a parameterized rep-
resentation of robotmotions.While these representations can take
many forms, in this paper we are interested particularly in ap-
proaches that represent motions using Dynamical Systems (DS).
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In order to successfully model the robot motion, demonstra-
tions should be provided such that they include the generic char-
acteristics of the motion. This is however very difficult when
dealing with complex and/or high dimensional motions. Incre-
mental Learning, whereby the robot successively learns the task
through several demonstrations, can alleviate this difficulty. Fur-
thermore, incremental learning can allow task refinement (incre-
mental adaptation of task model to improve task performance)
and reuse (use of an existing task model for a completely different
task) [3]. A general workflow of an incremental learning setting is
described in Fig. 1. While numerous advances have been made for
incremental motion learning for time-indexed trajectories, incre-
mental learning in DS representations is still a largely unexplored
area of research. In this work, we address this by proposing a novel
DS representation, called Locally Modulated Dynamical Systems
(LMDS), that allows to reshape DS while preserving stability prop-
erties of the original system. As hinted by the name, this is done by
locally applying transformations (e.g. rotations), to the original dy-
namics. It is shown that this way of reshaping dynamics is suitable
for robot motion modeling, since complex motions can be mod-
eled without risking the introduction of spurious attractor points
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Fig. 1. The figure illustrates the incremental process of acquiring a new skill by
reshaping dynamics using the proposed framework. The system can be reshaped
repeatedly until satisfactory task performance has been achieved.

or unstable behavior. The LMDS representation is not constrained
to a particular form of original dynamics or learning method (any
local regressionmethod can in principle be used, togetherwith any
representation of a first order autonomous dynamical system). We
further propose the Gaussian Process Modulated Dynamical Sys-
tems (GP-MDS) algorithm,which usesGaussian Process Regression
(GPR) to learn reshaped dynamics. In summary, themain contribu-
tions in this paper are:

• The LocallyModulatedDynamical Systems (LMDS) formulation.
• Stability analysis of the general LMDS formulation.
• An incremental learning algorithm for LMDS based on Gaussian

Processes, GP-MDS.

The remainder of this paper is organized as follows. In Section 2,
we provide a literature review. In Section 3 we detail the LMDS
formalism, and propose a particular parameterized form of the
modulation function which is used in this paper. In Section 4,
we then address the problem of how to learn LMDS, introducing
the GP-MDS algorithm. Experimental validation is presented in
Section 5, with a 2d example of warping dynamics for handwriting
letters, and one periodic as well as one discrete manipulation task
on the KUKA LWR and Barret WAM arms. The paper is concluded
with a discussion and an outlook into future directions of research
in Section 6.

2. Related work

Dynamical Systems have emerged as one of the most general
and flexible ways of representing motion plans for robotic appli-
cations. In contrast to classical architectures where a robot is usu-
ally programmed to track a given reference position trajectory as
accurately as possible, in DS representations the static reference
trajectory is replaced by one which unfolds as the task progresses,
making adaptation to unforeseen events possible. Motion gener-
ation with dynamical systems is a long-standing research topic
with important early approaches such as the VITE [4] model

suggested to simulate arm reaching motions. Recurrent Neural
Networks (RNN) have been successfully used for modeling dy-
namics [5–7] in various applications. However, neural network ap-
proaches typically suffer from long training times and difficulty to
ensure stability.

More recently, the Dynamic Motor Primitives (DMP) frame-
work [8,9] and variants [10] have gained popularity both in imi-
tation learning [11] and reinforcement learning [12,13]. This class
of DS has been shown to be very useful and flexible for a large vari-
ety of robotics tasks, both discrete and rhythmic. Coupling between
several DS is achieved via a shared phase variable that acts as a
clock, which also forces potentially unstable non-linear dynamics
to decay and eventually be replaced by a linear systemwith known
stability properties. This mechanism makes it easy to incorporate
exploration and learning without risking unstable behavior, but
it also means that the system is time-dependent, which for some
tasks may or may not be desirable.

In contrast, autonomous DS formulations [14] can encode
motions in a completely time-independent manner. By scaling the
speed of motion, time-invariant models can be transformed into
time-dependent models and cope with timing constraints [15,16].
Stability is arguably one of the most fundamental properties that
should be ensured when using DS for modeling robot motions,
both from a task performance and a safety perspective. In our
previouswork, this has been addressed in [17] by deriving stability
constraints for a particular parametric form of DS, Gaussian
Mixture Regression (GMR). A similar analysis with resulting
constraints have also been performed for DS learned by Extreme
Learning Machines (ELM) in [18]. A more generally applicable
method was proposed in [19], which presents an approach that
can stabilize any DS by online generation of an auxiliary command
that ensures monotonic decay of a task-based energy function
which is learned from demonstrations. This method allows more
complex motions than stability constraints based on a quadratic
energy function, which is used e.g. in [17], but is still limited by the
energy function used as a basis for the stabilization mechanism.
Task-based Lyapunov functions have also been explored in the
ELM framework in [20]. All of these methods are based on using a
parameterized Lyapunov function for ensuring asymptotic stability
of the dynamics. In each case, this has consequences on the
accuracy at which trajectories can be represented. In this work, we
do not base the stability analysis on a known Lyapunov function,
and instead construct a DS which is (1) inherently incapable of
introducing spurious attractors and (2) guaranteed to generate
bounded trajectories. These areweaker properties than asymptotic
stability, with the consequence that our dynamics can converge
to limit cycles or orbits (but not spurious attractors). In exchange,
we can directly incorporate incremental demonstrations, which
need not comply with an energy function. As will be shown later,
asymptotic stability is for all practical purposes an unnecessary
restriction in our framework, since it is not violated unless the
demonstrations explicitly indicate orbital behavior.

Our model is based on modulating an available autonomous
(time-invariant) DS with a state-dependent full-rank matrix, and
strongly related to our previous work where state-dependent
modulation was used to steer trajectories away from obsta-
cles [21]. While similar in formulation of the dynamical system,
here we assume a non-parametric form of the modulation and
learn it from examples.

Incremental learning from demonstration can alleviate the
difficulty of simultaneously demonstrating desired behavior in
multiple degrees of freedom. Furthermore, it can allow refinement
and reuse of a learned model for a different task. Various
methodologies have been used. In [22], a neural network based
approach inspired by howhumans consolidate existing knowledge
is presented. Gaussian Mixture Modeling (GMM) usually in
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