
Contents lists available at ScienceDirect

Robotics and Computer Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

Skill-based instruction of collaborative robots in industrial settings

Casper Schou⁎, Rasmus Skovgaard Andersen, Dimitrios Chrysostomou, Simon Bøgh, Ole Madsen
Department of Materials & Production, Aalborg University, Denmark

A R T I C L E I N F O

Keywords:
Collaborative robots
Task-level programming
Robot skills
Intuitive robot instruction
Industrial assembly

A B S T R A C T

During the past decades, the increasing need for more flexible and agile manufacturing equipment has spawned
a growing interest in collaborative robots. Contrary to traditional industrial robots, collaborative robots are
intended for operating alongside the production personnel in dynamic or semi-structured human environments.
To cope with the environment and workflow of humans, new programming and control methods are needed
compared to those of traditional industrial robots. This paper presents a task-level programming software tool
allowing robotic novices to program industrial tasks on a collaborative robot. The tool called Skill Based System
(SBS) is founded on the concept of robot skills, which are parameterizable and task-related actions of the robot.
Task programming is conducted by first sequencing skills followed by an online parameterization performed
using kinesthetic teaching. Through several user studies, SBS is found to enable robotic novices to program
industrial tasks. SBS has further been deployed and tested in two manufacturing settings demonstrating its
applicability in real industrial scenarios.

1. Introduction

In the last few years, we witnessed the collaborative robots era, where
robots are not considered a bulky piece of machinery in the production
line, but they actively share the workspace with human workers. They
can work safely alongside humans without fences, improving the pro-
duction flow and allowing the automation of new processes.

The scope of this work is to present an intuitive task-level pro-
gramming tool that is decoupled from specific hardware components
and bundles together expert knowledge and experience acquired by
successfully solving real industrial scenarios. The definition and
conceptual model of the skills used in this system have been pre-
viously discussed in [1]. There, the skill model is presented as a
generic concept which can be used for task-level programming using
both automatic and manual methods. In the current paper, we pre-
sent a framework which is designed and implemented specifically
for the intuitive manual instruction of collaborative robots by non-
robot experts, and we thereby give an overview of the system’s
capabilities and its evaluation. The main contributions of this work
are:

• A skill-based software system that facilitates easy and fast instruc-
tion of collaborative robots by inexperienced operators.

• A system that facilitates easy integration of existing off-the-shelf
components in terms of hardware and software.

• Multiple successful demonstrations where the adaptability,

scalability, and reconfigurability of the approach are investigated by
deploying it in various real industrial settings.

Several manufacturers have within last decade released a new
generation of robot arms as collaborative robots; e.g., Universal Robots
UR3, 5, and 10, KUKA iiwa 7 and 14, and Fanuc CR-35iA. These robots
offer safety features allowing them to operate safely in the proximity of
humans. They also offer new HRI methods to make task programming
easier. A common approach is kinesthetic teaching, where the operator
physically interacts with the robot arm. However, the HRI systems
supplied with these robots are confined to robot arm configuration
only. Consequently, challenges involved in configuring an entire col-
laborative robot platform persist; e.g., sensor and tooling configuration.
A few systems have been released to the market in recent years em-
bedding tooling and sensors and thus presenting a more holistic system
and offering more integrated control; e.g., Bosch APAS, KUKA
KMRiiwa, ABB YuMi and Rethink Robotics Baxter and Sawyer. An ex-
ample of an innovative solution is Intera Studio [2] from Rethink Ro-
botics, which offers train-by-demonstration capabilities for non-expert
users. However, all of the aforementioned systems are closed ecosys-
tems, and thus bound to the hardware supplied with or supplementary
to the robot. In the following, we present related work in Section 2 and
we propose a method for manual parameterization of robot skills in
Section 3. In Section 4, we discuss in detail the implementation of a
robot operating tool utilizing the proposed manual parameterization
method. Section 5 focuses on industrial applications of the robot

https://doi.org/10.1016/j.rcim.2018.03.008
Received 1 June 2016; Received in revised form 15 March 2018; Accepted 15 March 2018

⁎ Corresponding author.
E-mail address: cs@m-tech.aau.dk (C. Schou).

Robotics and Computer Integrated Manufacturing 53 (2018) 72–80

0736-5845/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/07365845
https://www.elsevier.com/locate/rcim
https://doi.org/10.1016/j.rcim.2018.03.008
https://doi.org/10.1016/j.rcim.2018.03.008
mailto:cs@m-tech.aau.dk
https://doi.org/10.1016/j.rcim.2018.03.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2018.03.008&domain=pdf


operating tool while Section 6 summarizes a number of usability as-
sessments made of the tool. We conclude with a discussion about the
lessons learned in Section 7, an overview of the future work in Section 8
and the final conclusion in Section 9.

2. Related works

The term cobot (short for collaborative robot) was introduced in 1996
by Colgate et al. [3] as a term for passive mechanical devices used to aid
humans in solving industrial tasks. Today the definition and consensus
on the term are not clear, but two main approaches are present in re-
search; truly collaborative robots and robot assistants. The former di-
rectly involves the human worker to collaborate in solving an industrial
task as a team. Robot assistants, on the other hand, do not necessarily
solve a task in direct collaboration with the human worker but serve as
an assistant working alongside the human worker.

A key challenge for robot assistants in a dynamic workflow is in-
structing the robot. A survey on robot programming systems revealed
two main approaches; manual programming and automatic program-
ming [4]. In the latter, cognitive and highly autonomous systems are
used to make the robot less dependent on instruction details. It relies on
planning algorithms based on sensor inputs and a comprehensive world
model. A well-known approach is the sense-plan-act (SPA) archi-
tecture [5], in which the robot switches between sensing, planning, and
acting states. Recent research on cognitive robots has a high focus on
knowledge gathering, formalization, and sharing [6–8]. Ontologies
have become a widely adopted tool, and have resulted in a recent
standard [9]. Combined with the idea of the semantic web, knowledge
sharing between robots reaches a grand scale; e.g., as pursued in the
RoboEarth project [10,11].

Contrary to reducing human intervention, recent research on
manual programming instead focuses on bringing traditional online
robot programming from engineers to the shop floor operators. This
decreases the need for high-wage engineering hours and allows the
operator to channel valuable process knowledge and experience into
the instruction. A programming method that provides easy and quick
instruction of robots is task-level programming [12]. It constitutes a
higher abstraction level than traditional online robot programming, by
focusing on task-related actions before low-level device control. Tasks
are constructed by concatenating these actions, which are often referred
to as skills of the robot [1]. Numerous representations of robot skills
that would be suitable for task-level programming have been pursued
during the last decades [13–17].

Stenmark [17] presents a skill definition which makes the inter-
connection of skills a controlled process using pre- and postcondition
checks. In [18], Stenmark and Malec exploit their definition of skills to
simplify robot programming using semantic knowledge stored in their
Knowledge Integration Framework. Based on the knowledge, the
system aids the user in configuring and parameterizing skill sequences
in an offline programming environment. Despite the same goal, the
framework we propose in this paper uses manual sequencing and
parameterization of skills to ease online robot programming. Thus,
extensive digital modeling of the scenario is not required.

Intuitive robot programming requires novel approaches of skill
parameterization as opposed to traditional online programming using
teach pendants [19]. For the spatial task information, such as target
points and trajectories, a suitable approach for collaborative robots is
kinesthetic teaching. In kinesthetic teaching, the human directly in-
teracts with the robot and pilots it through the intended trajec-
tory [20–22]. Kormushev et al. [20] present an approach where both
position and force profiles are taught to the robot. Wrede et al. [22]
present a method for kinesthetic teaching of redundant manipulators in
spatially constraint workspaces where the user first teaches the allow-
able kinematic configuration. Subsequently, the user teaches the task-
related trajectory and meanwhile the robot adheres to the previously
taught kinematic configuration. Contrary to Kormushev et al. and

Wrede et al., manual teaching is an integral part of skill para-
meterization in our work. Moreover, kinesthetic teaching is, in our
approach, combined with an intuitive graphical user interface to create
a holistic method for sequencing and parameterizing skills.

3. Task-level programming using skills

Robotic skills combine low-level functionality from multiple devices
into coherent higher-level programming blocks. This section briefly
introduces the concept of robotic skills and how they are used for task-
level programming. The skill model is based on the concept presented
in [1] and is expanded here to include online manual parametrization.

3.1. Conceptual architecture for skill based programming

The skill based architecture has three layers of abstraction: Tasks,
skills, and device primitives, as illustrated in Fig. 1. Device primitives
are functions provided by a single device. e.g., a robot arm, a camera, or
a force/torque sensor. In traditional robot programming, these func-
tions are used directly by the user. In skill-based programming, they are
used by the skill developer to design skills providing functionality on a
higher level. The purpose of skills is to enable shop floor factory
workers to program robots quickly and efficiently. Tasks can be pro-
grammed by sequencing and parameterizing a number of skills. The
three layers can be defined as:

Device primitives: A collaborative robot is a composition of several
devices; typically including a robot arm, a gripper, cameras, and
sensors. Each device provides a certain set of functionalities denoted
device primitives. Devices of the same type, e.g., gripper, derive the
same primitives, e.g., grasp. Thus, device primitives abstract on
specific implementation details on each device. Therefore, pro-
gramming based on device primitives is independent of specific
hardware components. Consequently, devices can be exchanged
without affecting the above control layers, as long as any new de-
vices provide the same device primitives.
Skills: A skill is a composition of sensing and manipulation primi-
tives which together generate a change to the physical world. A skill
is characterized by a number of parameters which must be specified
before execution. The parametrization makes the generic skill spe-
cific in the sense that it now performs one specific change to the
world when executed.
Tasks: Tasks are programmed by concatenating and parameterizing
skills, and they are directly related to solving specific goals in the
factory. The task layer is decoupled from the hardware layer of the
robot.

Certain functionalities; e.g., motion planning, object detection, and
pose estimation; do not come from a single device, and they do not
change the state of any object. Thus, they do not qualify as skills or as
device primitives. Appropriately, the service layer is introduced as an

Fig. 1. The three abstraction layers, 1: Tasks, 2: Skills, and 3: Device Primitives. Services
use multiple devices and provide higher-level functionality to the skill layer.

C. Schou et al. Robotics and Computer Integrated Manufacturing 53 (2018) 72–80

73



Download English Version:

https://daneshyari.com/en/article/6867752

Download Persian Version:

https://daneshyari.com/article/6867752

Daneshyari.com

https://daneshyari.com/en/article/6867752
https://daneshyari.com/article/6867752
https://daneshyari.com

