
Robotics and Computer–Integrated Manufacturing 51 (2018) 25–36 

Contents lists available at ScienceDirect 

Robotics and Computer–Integrated Manufacturing 

journal homepage: www.elsevier.com/locate/rcim 

Full length Article 

A novel command generation paradigm for production machine systems 

Ulas Yaman 

∗ , Melik Dolen 

Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Turkey 

a r t i c l e i n f o 

Keywords: 

Command generation 
Machine control languages 
CNC machine tools 
3D Printers 
Curve offsetting 
Vector operations 
Python scripting language 

a b s t r a c t 

This paper presents a new command generation technique titled VEPRO for computer controlled production ma- 
chinery. In this method, the tool trajectory is described by a high-level scripting language that enables parametric 
representations of complex work-piece geometries. The interpreted script is then employed to generate the in- 
terpolation data required to compute a tool trajectory that is subjected to a number of kinematic constraints. A 

real-time interpolator is employed to provide the position commands required by each motion controller in a 
synchronous fashion. As a proof of concept, the proposed method is emulated on a PC using Python scripting 
language. The performance of the paradigm is rigorously assessed via two test cases involving different manufac- 
turing techniques (e.g. pocket milling and 3D printing). Through the experimental results, the paper illustrates 
that the technique, which lends itself for real-time hardware implementation, exhibits satisfactory performance 
for all intensive purposes and that the method is technically feasible for a wide spectrum of manufacturing ap- 
plications and systems. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Command generators (CGs) serve as key components for computer- 
controlled production machines, industrial robots, advanced automa- 
tion systems and more. They simply calculate the reference positions of 
tool/end effector on predefined trajectory so that the corresponding in- 
formation (along with the higher-order time derivatives of the reference 
if deemed necessary by the control algorithm) are synchronously fed to 
the digital motion controller of a particular machinery at each and every 
sampling period. 

In manufacturing industry, the command trajectory (along with the 
accompanying auxiliary functions) is defined via machine control lan- 
guages (MCLs) conforming to various international- or industrial “de- 
facto ” standards. These languages include numerical control (NC) lan- 
guage (ISO 6983, EIA 274D) [1] , BCL (EIA 494C) [2] , STEP-NC (ISO 

10303-238) [3] , and DMIS (ISO 22093) [4] . The automatically pro- 
grammed tools (APT) [5] and robot programming languages (e.g. AML, 
HELP, Karel, RAIL, VAL 3, etc.) [6] can be regarded as high-level pro- 
gramming languages to produce operational instructions for the cor- 
responding applications. A concise discussion of the afore-mentioned 
MCLs along with the issues for selecting a proper standard for a spe- 
cific application is further discussed by [7] . As of today, the NC lan- 
guage (a.k.a. “G-code ”) as described by ISO 6983 is widely adapted 
in manufacturing industry. The (machine-specific) low-level language 
essentially defines the tool trajectory in terms of line-, arc-, and com- 

∗ Corresponding author. 
E-mail addresses: uyaman@metu.edu.tr (U. Yaman), dolen@metu.edu.tr (M. Dolen). 

plex curve segments (parabola, helix, spline, etc.). The versatility of 
the NC language is often-times enhanced by the functions (such as ad- 
vanced code editing, syntax highlighting, macro definitions, machining 
simulation/visualization, etc.) associated with graphical-user interfaces 
(GUIs). Furthermore, some CNC unit manufacturers extend the NC lan- 
guage via high-level language constructs (i.e. conditional branching, 
loop controls, arithmetic operations, etc.) to improve the capabilities 
of the NC programs (e.g. Sinumerik high-level language). Despite en- 
hancements through CAM-like features, the underlying CG scheme re- 
mains unchanged and the accompanying problems are somewhat inher- 
ited [7,8] . 

To overcome the problems for the existing CG scheme within the 
context of ISO 6983, a new standard called STEP-NC (ISO 10303-238) 
has been established to create a new manufacturing infrastructure along 
with next generation of “intelligent ” CNC machine tools. The underly- 
ing data model for STEP-NC incorporates the complete information on 
how to manufacture a workpiece including its geometry, tools/fixtures 
involved, work plans, tool paths, CNC model/type, and more. Due to 
its comprehensive content, the CNC machine tools employing STEP-NC 

are still in their early development stages after (more than) a decade 
of intense research [9–14] and commercial STEP-NC machine tools are 
very rare. To maintain applicability, the current research efforts mostly 
employ STEP-NC translators to generate NC codes to make good use 
of the industry de-facto standard CNC units. On the other hand, the 
SPAIM (STEP-NC Platform for Advanced Intelligent Manufacturing) ar- 
chitecture [9,10] developed within the context of the FoFdation project 

https://doi.org/10.1016/j.rcim.2017.11.016 
Received 14 March 2017; Received in revised form 15 November 2017; Accepted 16 November 2017 
0736-5845/© 2017 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.rcim.2017.11.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/rcim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2017.11.016&domain=pdf
mailto:uyaman@metu.edu.tr
mailto:dolen@metu.edu.tr
https://doi.org/10.1016/j.rcim.2017.11.016


U. Yaman, M. Dolen Robotics and Computer–Integrated Manufacturing 51 (2018) 25–36 

[15] is one of the exceptions where a complete STEP-NC enabled CNC 

system was developed by making good use of LinuxCNC [16] (OpenNC) 
platform. 

An alternative solution is proposed in this paper. In this approach, 
a universal code called VEPRO (acronym for VE ctor PRO cessor) is uti- 
lized as the central piece in CG scheme.The code, which includes sophis- 
ticated functions as deemed by production machinery, is a high-level 
language enabling parametric representation of tool trajectories. De- 
spite some minor similarities with the APT language and the STEP-NC; 
the technique, which embraces to bottom-up hierarchical integration, 
differs significantly from its counterparts in terms of implementation, 
structure, information model, and functionality. The novel features of 
the proposed language are as follows: 

• VEPRO is based on (open-source) Python language which is easy to 
master whereas the (obsolete) APT language constitutes 576 vocabu- 
lary words [17] while the STEP-NC standard alone covers more than 
1500 pages [3] . 
• VEPRO is a dynamic language which is extendable for new ap- 

plications. New libraries, functions, and data structures could be 
incorporated as the need arises in the future. 

• Note that for STEP-NC, the work is still underway by various ISO 

Committees. The extension of the standard to new manufactur- 
ing processes (such as contour cutting, Wire EDM, Sink EDM) is 
currently under development. 

• VEPRO enables the development of parametric programs (or tem- 
plates). Such programs could be conveniently modified to character- 
ize a family of different geometries for workpieces. Given the critical 
geometric entities, a process engineer can manually develop/edit the 
VEPRO code suitable for a particular production machinery. VEPRO 

programming is expected to become much more versatile when fully 
supported by specialized GUIs and utility programs in the near fu- 
ture. 

• VEPRO embraces “bottom-up ” approach where low-level functional 
units (e.g. interpolation, low-level supervision, feed-modulation, 
data management) are built, tested, and organized into more 
complex entities (e.g. application objects, manufacturing strate- 
gies/plans, intelligent agents, etc.) up in the hierarchy to handle 
sophisticated production tasks. 

• VEPRO language currently provides unidirectional information flow 

in CAD/CAM/CNC chain. However, VEPRO could evolve to accom- 
modate bidirectional information flow in the future. 

• Unlike APT (or STEP-NC), VEPRO does not directly employ ab- 
stract geometric features/entities. Instead, the basic data struc- 
tures of VEPRO are jagged arrays that are handy while devis- 
ing/editing/debugging part programs. 

• Just like STEP-NC, VEPRO programs hold the prospect of offering 
full portability on a family of production machinery provided that 
the VEPRO interpolator unit is realized and standardized in time. 

• Unlike the APT processor, the VEPRO could be simply implemented 
on small-form factor computers running the Python interpreter. 
• STEP-NC processor code has yet to be developed/(fully) tested 

for the newer generations of microprocessors/major computing 
platforms and is likely to be proprietary code. 

• VEPRO can co-exist with the software tools/systems employed in the 
current CNC infra-structure. 
• VEPRO could be incorporated into the existing CNC units and 

could enable its users to work with VEPRO- and NC codes side 
by side. 

• To increase the efficiency of the programming phase, the au- 
tomatic code generation could be implemented as a part of 
CAM/CAPP system. Since on functional level, VEPRO is directly 
compatible with most CAM software tools, VEPRO code could 
be automatically generated with the utilization of proper add-on 
modules. 

Fig. 1. Architecture of Vector Processor (VEPRO). 

• As an interim solution, CLDATA could be facilitated to generate 
the required code without augmenting the existing manufactur- 
ing infrastructure. 

Table 1 describes the properties of different platforms. Please note 
that STEP-NC standard itself does not specify how the data from 

the models are utilized to generate tool paths (or interpolation tech- 
niques for that matter) [18,19] . On the other hand, VEPRO is an ad- 
vanced interpolation scheme which could complement the operation of 
conventional- and STEP-NC compliant manufacturing systems. Conse- 
quently, the objective of this paper is to assess the potential for devising 
a VEPRO based CGs for a wide spectrum of computer controlled produc- 
tion machinery. 

The organization of this paper is as follows: After this introduction, 
the following section elaborates the VEPRO architecture while the next 
one discusses the corresponding high-level language including some 
of the critical functions developed for common manufacturing tasks. 
Section 4 evaluates the presented technique experimentally on two test 
cases involving machining and 3D printing. Finally, some key results 
about this study are given in the last section. 

2. Architecture 

VEPRO is a motion-command generator designed specifically for 
CNC machine tools, industrial manipulators, and advanced machinery 
used in manufacturing industry. As shown in Fig. 1 , the system is com- 
posed of four major units: (i) VEPRO Kernel; (ii) Real-time Interpolator; 
(iii) Memory Management Unit; (iv) Ethernet Controller. Despite the fact 
that the system-on-a-chip (SoC) solution could be realized on a FPGA as 
suggested by [20] , the paper does not dwell on hardware implemen- 
tation details and primarily focusses on the architecture on functional 
level. A detailed discussion of the SoC implementation of the system in- 
cluding multi-processor version, is given in [20] . It is interesting to note 
that [21] proposes a CG architecture incorporating two abstraction lay- 
ers where the assembly-like language (called BNCL) is utilized to repre- 
sent the trajectory on one layer (BVM) while the machine hardware is 
abstracted by another (BVH). Despite some similarities in concept, the 
presented approach here differs significantly from the above-mentioned 
architecture in terms of functional organization, language, data abstrac- 
tion, information flow, and most importantly implementation. 

The brief descriptions of these units follow: 

• Memory management unit (MMU) manages the data traffic among 
the VEPRO units and the memory devices (i.e. SRAM, SDRAM, 
E2PROM, flash/solid-state drives, SD card etc.). For the sake of sim- 
plicity, the MMU employs a (byte-indexed) 32-bit addressable linear 
memory model. A portion of the memory (called hardware page) is 
especially dedicated to file/control registers where the active data 

26 



Download English Version:

https://daneshyari.com/en/article/6867810

Download Persian Version:

https://daneshyari.com/article/6867810

Daneshyari.com

https://daneshyari.com/en/article/6867810
https://daneshyari.com/article/6867810
https://daneshyari.com

