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a b s t r a c t 

The increasing demand for highly customized products requires flexible, reactive and adaptive manufacturing 

systems. Accurate and up-to-date information about the processes is a strict requirement to meet these needs. 

Real-time data capturing technologies, such as RFID, have already been used for some years in manufacturing 

environments, mainly for inventory management, planning and quality control. However, these systems fail to 

generate information on the performance of the operator in the system. This paper presents a video-based system 

that automates the analysis of manual assembly line work stations and generates near real-time information to 

support workers in their pursuit of continuous improvement. A work cycle classification method was developed 

to detect anomalous and problematic situations in the work flow. Besides the classification of work cycles, the 

method also generates performance indicators to analyze the performance of the operator in the system. These 

performance indicators are visualized in an operational dashboard, which reveals the improvement potential of 

the work station. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the last decades, manufacturing companies had to deal with an 

increasing demand for more customized products. This shift from mass 

production to mass customization has increased the complexity of both 

manufacturing processes and their support systems. In order to stay 

competitive, these companies are forced to continuously monitor, an- 

alyze and redesign their processes. One of the major challenges is the 

collection of reliable and detailed data about the current process. Exist- 

ing work measurement techniques are still relying on stopwatch mea- 

surements and manual video analysis, making them prohibitively time- 

consuming. More advanced and automated techniques are therefore re- 

quired to support improvement of the continuously evolving contempo- 

rary production facility. 

The progress in data capturing, storage and communication tech- 

nologies has facilitated the use of video images in a vast variety of appli- 

cations. Video content analysis has the ability to automatically analyze a 

video and detect and determine certain events. Well-known applications 

are found in sports analytics software [1] and video surveillance [2] . In 

manufacturing environments, motion capturing is mainly used for qual- 

ity control [3] , monitoring automated production lines and measuring 
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and simulating the ergonomic load of workers [4] . In this research, this 

technology is used to capture information about the operators ’ behavior 

and work method. 

This paper proposes a vision-based automated method to support 

manufacturing companies in monitoring, analyzing and redesigning 

their manufacturing processes. The system monitors workstations with 

one or more operators, and has two main functions: providing basic 

performance measurements and detecting problems or inefficiencies by 

recognizing abnormal operator behavior. The non-intrusive character 

of vision technology is one of the main assets of the system. Because of 

the fact that the system does not interfere with the operator, it is able 

to generate unbiased data and information over a prolonged period of 

time, unlike the manual analysis tools used today. 

The system makes use of multiple cameras to track the movement of 

the operator within his work station. The captured work cycles are clus- 

tered and classified in order to detect abnormal behavior or anomalous 

events. The system identifies these events and returns the video footage 

of the concerning work cycle to the user. By accurately tracking and 

indicating these problematic situations, the system significantly accel- 

erates the analysis and redesign process of assembly line work stations. 

Besides searching for anomalous events, the system also calculates the 

necessary performance indicators (KPI’s) to assess the performance of 
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a work station and more specifically the worker in the system. These 

performance measures are visualized and summarized in an operational 

dashboard. This dashboard provides a very visual and comprehensive 

view on the performance of the work station and could therefore allow 

operators to self-monitor their work in real-time. Moreover, the poten- 

tial to automatically generate work instructions makes this system an 

important part of any operator information system. 

This paper continues as follows: Section 2 describes what systems 

are currently used in industry to automatically analyze and improve 

manufacturing processes. Section 3 explains which methods are used 

for classifying the work cycles and how the performance measures are 

calculated. In Sections 4 and 5 the experimental setup is described and 

the results of these experiments are discussed. Finally, our conclusions 

are presented in Section 6 . 

2. Related work 

Contemporary market demands require highly flexible and adaptive 

manufacturing systems. As opposed to conventional automation sys- 

tems, humans have the capability of learning and adapting their behav- 

ior based on what they observe. These cognitive capabilities of highly 

skilled assembly workers are still the keystone to provide the level of 

flexibility, adaptability and reliability needed in a modern production 

environment [5] . In order to maintain the flexibility while maximizing 

the efficiency of the process, workers should be supported by automated 

systems that provide them with real-time information about the process 

and pinpoint opportunities for improving efficiency and profitability. 

Cognitive automation in an assembly line context supports decision- 

making in order to increase the quality of products [6] . The positive 

effects of an increased level of Automation (LoA) are widely reported in 

literature [7,8] . Most of the existing cognitive automation systems fo- 

cus on providing the operators with real-time data about work instruc- 

tions in order to decrease the number of errors and improve quality. 

Examples of such systems are described by [9,10] . Our research aims to 

extend these systems by providing information on how these tasks are 

performed in order to facilitate continuous improvement in the work 

station. 

Constant capturing and tracking off accurate real-time process data 

is thus a necessity. The rapid evolution and development of wireless 

communication technologies such as Bluetooth and RFID have created 

new opportunities for monitoring new parameters throughout the whole 

lifecycle of a product [11] . Real-time data capturing systems based on 

RFID technology are already used in manufacturing applications mainly 

for inventory control [12] , quality control [13] and job floor process 

control [14,15,16] . In assembly work stations, RFID readers have been 

used to monitor progress in order to inform workers about inspections 

and required test procedures and to automatically update the central 

production database [17] . These new technologies are part of industry 

4.0, where cyber-physical systems communicate with each other and 

humans over the internet of things in so called smart factories [18] . 

Most of these systems generate loads of accurate real-time data about 

the process, however very little of this information is directly relevant 

for the workers. 

Gröger et al. [19] proposed an Operational Process Dashboard for 

Manufacturing to support the operator to improve processes. They iden- 

tified four main areas of process-oriented information that is relevant for 

operators: 

• Process context: information about the context of both the overall 

process and specific process steps in order to create a general under- 

standing of the entire process. 
• Process performance: metric-based performance measures that sup- 

ports the workers during their decision making process. 
• Process knowledge: information on the actual execution of process 

steps and opportunities for process optimization. 

• Process communication: transfer of information between all partici- 

pants in the process. 

This research mainly focusses on measuring performance and captur- 

ing knowledge. By generating performance measures that are directly 

related to the operators ’ performance, detection of inefficiencies and 

failures, capturing best practices and document this with video data, 

the system creates a vast amount of data and information that is di- 

rectly relevant for assembly line workers. The use of human motion 

capturing techniques in assembly environments has been reported in lit- 

erature. Examples found in literature aim to capture human motion to 

and use this data to improve the prediction of human motions in virtual 

simulation models. These methods rely on marker-based motion captur- 

ing techniques [20] or systems that use Kinect data [21] , together with 

force and tool embedded sensors [22] . Multi-camera vision systems have 

been used to monitor the operator’s safety in a human-cobot collabora- 

tive work cell [23] . Prabhu et al. proposed a method to simultaneously 

monitor and record human-workpiece interaction using a Kinect cam- 

era. The aim of their research is to create a better understanding of these 

interactions and obtain useful information for enabling automation sce- 

narios [24] . 

None of the aforementioned monitoring systems feed the captured 

information back to the operator. This research aims to extract infor- 

mation for the human motion data and present this information to the 

operator directly in order to facilitate continuous improvement of as- 

sembly processes. 

3. Methodology 

3.1. Image processing 

The system uses multiple cameras to track the operator during his 

work. The position of the operator in the video streams is calculated by 

generating a 3D-model of the operator from the synchronized footage of 

these multiple cameras as described by Slembrouck et al. [24] . The tra- 

jectory of the operator is then reconstructed by taking the 2D-projection 

of the operators ’ body of mass on the ground plane of the workstation 

in every video frame (50 ms). To create the 3D model of the operators ’

body, a visual hull is generated for every video frame. First, foreground- 

background segmentation is used to generate a mask that visualizes the 

position of the operators ’ silhouette in the 2D camera view for each 

camera. The physical space is divided in cubes of 2 cm × 2 cm × 2 cm, 

called voxels. For every camera, these voxels are mapped to their 2D 

projections (pixels) in the camera view. Voxels for which their 2D pixel 

projection belongs to the foreground mask are considered as occupied. 

These voxels create a so called generalized infinity cone with the op- 

erators ’ as the base and the camera as the apex. Performing the same 

procedure for each of the five cameras, results in five different infinity 

cones. Only voxels that belong to each of these infinity cones are kept 

to create the 3D model of the operators ’ body [25] . Fig. 1 visualizes this 

concept for a system with 4 cameras. Starting from the infinity cone 

created by one single camera (top left), the 3D model is systematically 

refined by carving away the voxels that don’t belong to the infinity cones 

of the added camera views. The outline of the visual hull algorithm is 

given in Fig. 2 . 

The objects center of mass is then projected onto the ground plane 

to calculate the operators ’ position in every frame of the video image 

(50 ms). Every data point is given a timestamp. This way, the trajectory 

the operator follows during his work cycle is reconstructed. The output 

of the voxel carving method for one video frame is shown in Fig. 3 . 

One of the main difficulties when using vision technology in indus- 

trial environments is occlusion. Static objects such as conveyors and 

racks can block the view of certain cameras and make reconstruction 

of the workers ’ posture using the visual hull algorithm rather difficult. 

Therefore, a self-learning algorithm that is able to build an occlusion 

map for each camera from a voxel perspective, is developed. This in- 
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