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a b s t r a c t 

Robot positioning accuracy is critically important in many manufacturing applications. While geometric errors 

such as imprecise link length and assembly misalignment dominate positioning errors in industrial robots, sig- 

nificant errors also arise from non-uniformities in bearing systems and strain wave gearings. These errors are 

characteristically more complicated than the fixed geometric errors in link lengths and assembly. Typical robot 

calibration methods only consider constant kinematic errors, thus, neglecting complex kinematic errors and limit- 

ing the accuracy to which robots can be calibrated. In contrast to typical calibration methods, this paper considers 

models containing both constant and joint-dependent kinematic errors. Constituent robot kinematic error sources 

are identified and kinematic error models are classified for each error source. The constituent models are gener- 

alized into a single robot kinematic error model with both constant and high-order joint-dependent error terms. 

Maximum likelihood estimation is utilized to identify error model parameters using measurements obtained over 

the measurable joint space by a laser tracker. Experiments comparing the proposed and traditional calibration 

methods implemented on a FANUC LR Mate 200 i robot are presented and analyzed. While the traditional constant 

kinematic error model describes 79.4% of the measured error, the proposed modeling framework, constructed 

from measurements of 250 poses, describes 97.0% of the measured error. The results demonstrate that nearly 

20% of the kinematic error in this study can be attributed to complex, joint-dependent error sources. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Industrial robots are highly flexible and repeatable automation plat- 

forms effective for a number of manufacturing tasks [1] . In some appli- 

cations, a robot is programmed through a “teach ” mode [2] , in which 

the robot is manually positioned through a series of points. The robot 

can return to any of those points, within its repeatability, at any time 

by recalling them from memory. For these applications, repeatability is 

the critical design parameter while accuracy is not as critical. In other 

manufacturing applications, such as deburring and light machining, the 

robot will be commanded to arbitrary positions and orientations [3] , 

thus, its repeatability and accuracy are both important. However, robot 

accuracy can be an order of magnitude worse than its repeatability due 

to various sources of errors such as component manufacturing and as- 

sembly errors, as well as joint deflection errors [4–6] . Thus, a rapid and 

effective method for calibrating robots is essential. 

Research regarding robot calibration has been studied and well- 

developed over the past three decades. While the majority of the work 

focuses on kinematic model-based calibration, non-kinematic errors 

(such as elastic deformation) also play an important role in reducing 
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robot accuracy [7] . In [8] , kinematic calibration methods were classi- 

fied into open-loop, closed-loop and screw-axis measurement methods. 

In open-loop methods, external metrology systems are used to take mea- 

surements. Two examples of open-loop calibration methods are given 

in [9,10] , in which a laser tracker and a single telescoping ballbar, re- 

spectively, were used for data collection. In closed-loop methods, ex- 

ternal measurement devices are not needed. The robot endpoint is at- 

tached to the ground such that a mobile closed-loop kinematic chain is 

formed if the robot is redundant to the endpoint constraint. Then kine- 

matic model parameters are identified using joint angle readings. The 

methodology and applications of this methodology are given in [11] . 

In screw-axis measurement methods, kinematic errors are calibrated by 

determining the actual transformation relationship between consecutive 

joints. A typical screw-axis measurement method is Circle Point Analysis 

(CPA) [12] , two examples of which are given in [13,14] . 

Although a wealth of research has been conducted in robot kine- 

matic calibration, a majority of the work only considers ideal rigid body 

motion and consists of identifying constant joint offsets. While a joint- 

independent error kinematic model may be sufficient to describe ge- 

ometric errors resulting from structural errors in the robot assembly 

(e.g., link-length or alignment errors), many complex kinematic errors, 
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such as periodic gear errors, cannot be sufficiently captured. Strain wave 

gearings, commonly used in industrial robots due to their high reduc- 

tion ratio, light weight and compact size [15,16] , are known to have 

complicated position-dependent errors caused by manufacturing toler- 

ances, alignment errors and the gear tooth placement errors on both the 

circular and flexible splines [17] . Flexing of bearings will also result in 

non-parallel coupling of gearboxes, causing the end effector to be out 

of plane, higher at some positions and lower at other positions [18] . 

Assembly inaccuracies, gear tooth errors and wear combine to cause 

position dependent and periodic kinematic errors [19] . The small mag- 

nitude of the kinematic errors in strain wave gearings will be ampli- 

fied by serial links to the end effector, resulting in large, very com- 

plex robot errors. More precise models are needed to better describe 

these complex kinematic errors and, thus, improve post calibration 

performance. 

A new robot kinematic calibration method capable of capturing both 

fixed and complex kinematic errors is developed in this paper. Six De- 

gree of Freedom (DoF) error transformation matrices between consec- 

utive joints, having joint-dependent error terms modeled by high-order 

polynomials, are used to construct a joint-dependent kinematic error 

model capable of describing complex geometric errors [20] . A laser 

tracker, having the advantages of rapid measurement speed and the abil- 

ity to gather most, if not all, of the measurements in a single setup, is 

used for data collection. Then, error model parameters are identified 

with a maximum likelihood estimation algorithm [21] , and a gradient 

search inverse kinematic compensation algorithm [22] is used for com- 

pensation. 

The rest of this paper is organized as follows. Section 1 categorizes 

and models different robot kinematic errors. Section 2 proposes a high- 

order, joint-dependent kinematic error model. Identification and com- 

pensation methods are provided in Section 3 . Section 4 provides the ex- 

perimental results for a FANUC LR Mate 200 i robot. Circle Point Analysis 

is also implemented as a representative traditional calibration method. 

A comparison of CPA with the proposed method is described and ana- 

lyzed in Section 5 . The paper is summarized and conclusions are drawn 

in Section 6 . 

2. Robot kinematic error modeling 

2.1. Characterization of robot kinematic errors 

Let 𝐓 

𝑖 −1 
𝑖 

represent a transformation from Frame i − 1 to Frame i and 

parameterize 𝐓 

𝑖 −1 
𝑖 

according to the Denavit–Hartenberg (DH) conven- 

tion [23] as, 

𝐓 

𝑖 −1 
𝑖 = 𝐓 𝑅𝑍 

(
𝜃𝑖 
)
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(
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)
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)
, (1) 

where T Rj is a rotation matrix about axis j , T Tj is a translation matrix 

along axis j , and 𝜃i , d i , a i and 𝛼i are model parameters. Using the DH 

frame assignment convention, a rotary joint can be written as 

𝐓 
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(
𝑞 𝑖 
)
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, (2) 

where q i is the joint command of link i and, 
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is a fixed homogeneous transformation. Robot kinematic errors (e.g., 

link length error, misalignment, pitch error) will cause differences be- 

tween the actual and nominal transformations. Appropriate mathemat- 

ical descriptions of those errors are essential in the construction of 

robot kinematic error models. Several robot kinematic error sources 

are described and their corresponding error models are constructed as 

follows. 

1) Rotating center offset errors 

The nominal transformation 𝐓 

𝑖 −1 
𝑖 

starts from the rotating center of 

Frame i − 1. Existence of assembly errors will cause an offset be- 

tween the actual and nominal rotating center. In this case, the actual 

transformation from Frame i − 1 to Frame i, 𝐓̃ 

𝑖 −1 
𝑖 

, is 

𝐓̃ 
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𝑖 

(
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(
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)
, (4) 

where E RC, i is a fixed error translational transformation describing 

the i th joint rotating center offset, 

𝐄 𝑅𝐶,𝑖 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 𝛿𝑅𝐶,𝑋,𝑖 
0 1 0 𝛿𝑅𝐶,𝑌 ,𝑖 
0 0 1 𝛿𝑅𝐶,𝑍,𝑖 
0 0 0 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (5) 

and 𝛿RC , j , i is the translational error along the j th axis. Fig. 1 (a) 

gives a geometric description of a rotating center offset where Frame 

X i -1 Y i -1 Z i -1 denotes the nominal Frame i − 1 and Frame 𝑋 ′
𝑖 −1 𝑌 

′
𝑖 −1 𝑍 

′
𝑖 −1 

denotes the actual Frame i − 1. 

2) Mastering errors 

The location of the zero position, referred to as mastering, is set by 

aligning the robot through one of several procedures such as zero 

degree or single axis mastering. However, a robot might lose the 

mastering data and remastering can introduce a small change in the 

zero location. With this fixed small change, the actual transformation 

is 
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, (6) 

where Δq i 0 is a fixed mastering error for joint i . Fig. 1 (b) shows the 

transformation due to mastering errors. 

3) Link length and assembly errors 

Imprecise manufacturing of link parts and assembly misalignment 

errors will cause a fixed offset of the nominal link lengths (i.e., d i 
and a i ) and angles between joints (i.e., q i and 𝛼i ). The resulting trans- 

formation due to the errors in the link lengths and angles between 

joints can be represented by 
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where Δq ia , Δd i , Δa i and Δ𝛼i are fixed link length and assembly 

errors and E LA , i is a fixed link length and assembly error transforma- 

tion, 

𝐄 𝐿𝐴,𝑖 = 
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. (8) 

Fig. 1 (c) describes the transformations due to these errors using the 

DH convention. 

4) Pitch errors 

Pitch error is an error in the gearing that is caused by the runout of 

the gear flank groove. The pitch error will affect the nominal gear 

ratio such that the nominal joint command, q i , will be amplified 

or attenuated. Further, the gear teeth may not be ideally evenly dis- 

tributed; therefore, the pitch error may also be a function of the gear 

angle. In this case, the actual transformation will be 

𝐓̃ 

𝑖 −1 
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(
𝑞 𝑖 
)
= 𝐓 𝑅𝑍 
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)
𝑞 𝑖 
)
𝐓 𝑑 𝑖 , 𝑎 𝑖 , 𝛼𝑖 
, (9) 

where r ( q i ) is a joint-dependent correcting ratio for pitch error. 

Fig. 1 (d) illustrates the transformation due to pitch errors. 

5) Strain wave gearing errors 

Strain wave gearings are widely used in robotic transmission sys- 

tems. A strain wave gearing, shown in Fig. 2 , is comprised of three 

components: a flexible spline, a wave generator and a circular spline. 

The wave generator, inserted into the flexible spline, will rotate as 

the input. Although strain wave gearings have the advantages of 
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