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a b s t r a c t

The industrial requirements for controllers able to perform tasks in the presence of plant nonlinearities
are growing. In addition, an increase in industrial computation power is allowing the implementation of
more complex control algorithms in the fast processing industry. In this investigation three different
nonlinear model predictive control algorithms are tested and evaluated in simulation and experimen-
tally. The methodologies are adaptive nonlinear model predictive control (nMPC), PID based nMPC
(PIDnMPC), and a novel simplified nMPC (SnMPC). These are tested in simulation with an inverted
pendulum, a Van der Pol oscillator, and a planar 2-link vertical robotic arm. The controllers are tested
experimentally using a fabricated planar 2-link vertical robotic arm apparatus. A comparison of the
different algorithms is made with special attention to trajectory tracking, computational complexity and
transient response dynamics.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since the 1970s MPC has gained popularity in the process in-
dustry and academia as a robust control form able to handle
problem features such as constraints, disturbances, and complex
modeling. The importance of control algorithms capable of nego-
tiating nonlinear systems in current and future automation in-
dustries is undeniable. A number of controller methodologies have
been developed to address this class of problems. These nonlinear
schematics often present themselves as adaptations of classic
control algorithms such as PID control and model predictive con-
trol (MPC) [20,11,18,7].

In many cases different adaptations of MPC for nonlinear sys-
tems are designed for a class of problems, or to emphasize a
control objective [4,13,21]. Other examples of advanced nonlinear
MPC techniques incorporate tools such as artificial neural net-
works, and global optimization methods [6,3]. The trade-off of
these advanced nonlinear MPC methods is complexity and longer
computer processing time [23]. This can be mitigated by efficient
nonlinear MPC algorithm formulations, and becomes relevant
when considering the more recent extension of MPC to applica-
tions, beyond the process industry, into electro-mechanical sys-
tems [16,15,10]. Examples of nonlinear MPC control formulations
applied to fast systems include robotics, active vibration control,

and unmanned aerial vehicles [12,24,17,14,8].
Other forms of state dependent MPC that address nonlinear

dynamics have been formulated [1,19]. While these schemes work
well, they are complex in formulation and cannot be readily ap-
plied to fast response systems, such as robotic manipulators, that
involve kinematic solutions within the control sampling instant. In
addition, these methodologies did not address the challenge of
tracking irregular reference trajectories that are prevalent in ro-
botic systems. This study focuses on developing nonlinear for-
mulations that can be applied to the general field of MPC with
respect to fast response systems to address some of these
challenges.

The development and the application of three different for-
mulations of nonlinear adaptive MPC are considered here. The
first, nMPC, is based on standard nMPC methods. The second is a
hybrid form of MPC that includes a PID component inside the
nMPC control loop (PIDnMPC). The first two presented approaches
can be applied to most adaptive variations of MPC schemes such as
generalized predictive control (GPC), M-shifted MPC, and ex-
tended predictive control (EPC) [2,9]. The third methodology is a
novel simplified version of nonlinear MPC (SnMPC). The perfor-
mance of these nMPC formulations are evaluated with respect to
fast processes in industry. Knowledge of underlying characteristics
of these nonlinear methodologies can be helpful in selecting the
proper control type for a given application. The algorithms de-
signed here are tested first in simulation on standard nonlinear
plant examples and then with a planar two link vertical robot
manipulator. The simulation results are validated with experi-
ments conducted using the modeled robot manipulator. Features
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of the nonlinear controllers are summarized and suggestions for
future research directions are made.

2. Model predictive control

The standard Model Predictive control algorithm rests on the
optimization of control moves, u, in order to minimize future er-
rors. The optimization is done over a prediction horizon, N using a
model in order to construct predicted outcomes of plant actua-
tions ŷ . The MPC control algorithm considered here is dynamic
matrix control (DMC) which is characterized by a dynamic matrix
model A:
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The dynamic matrix is constructed with a normalized open loop
response vector, a, to an impulse or step actuation. When con-
sidering linear control problems the dynamic matrix is constant
throughout controller implementation and the change in control
move, Δu, is evaluated at every sampling instant.

The objective function used to optimize Δu for DMC control can
be written as:
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where r̂ is a desired reference value or profile and the error to be
minimized is the difference ^ − ^y r. Least squares optimization is
used to evaluate Eq. (2):

λΔ = ( − ) ( )−u A A I A E 3T T1

The prediction vector for the current time step ^|y t is then de-
termined with the prediction vector of the previous time step ^| −y t 1

and the predicted response to the change in u made since the
previous time step ΔA u:

ϕΔ^| = ^| + + | ( )−y y A u 4t t t1

where ϕ is a model correction value, calculated at each time in-
stant, that adjusts the ŷ to account for differences between model
predictions and plant measurements ym:

ϕ| = − ^ | ( )−y y 5t m t1 1

The three variations of nonlinear control algorithms discussed
in this section are all derived from this standard linear MPC con-
trol algorithm. Good complex trajectory tracking performance is
expected when considering robot manipulators [22]. For this
reason, the MPC tracking enhancement described in [5] is added to
all implemented and simulated control algorithms presented here.
Examples of controller tracking capacity are shown experimentally
with the robot manipulator.

2.1. Nonlinear adaptive MPC – nMPC

When deriving nMPC formulation, A in Eq. (1) is not constant.
Every sampling instant a new A is generated to reflect the varying
dynamics of a nonlinear plant. The |A t in this case is constructed
using simulated normalized step or impulse responses. The si-
mulations are generated using the current states to capture the
associated system dynamics:

λΔ = ( | | − ) | ( )−u A A I A E 6T
t t

T
t

1

Note that least squares optimization is used, this is appropriated
because the adaption is a linearization of the nonlinear plant and
Eq. (4) still holds true. In order to evaluate a more accurate pre-
diction, ŷ is constructed using a simulation of the nonlinear plant
being controlled. The adaptive nonlinear MPC algorithm is analo-
gous to the standard linear MPC algorithm in all other respects. A
block diagram representation of this control algorithm is shown in
Fig. 1.

2.2. PID based nonlinear MPC – PIDnMPC

The PIDnMPC algorithm is an extension to nMPC, where a PID
feed back loop is incorporated into the controller formulation as
depicted in Fig. 2. The nMPC model is that of a closed loop PID
controlled system as opposed to the usual plant model. This
structure allows the nMPC component to strategically adjust the
setpoint of the internal PID controller. The system nonlinearities
can then be accounted for and their undesirable controlled fea-
tures can be mitigated. In fast processing industrial applications
this hybrid approach is being used [12]. The method is limited to
linear MPC as the lead control algorithm due to the additional
computational effort of adaptive MPC algorithms.

2.3. Simplified nonlinear MPC – SnMPC

The final form of nonlinear MPC considered in this investiga-
tion is a simplified nMPC abbreviated, SnMPC. The objective of this
control scheme is to eliminate predicted errors. As with nMPC, this
is achieved by minimizing the mean square error of the future
response. The SnMPC objective cost function is shown in the fol-
lowing equation:
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where αi is a vector of weights that can be used to adjust controller
aggressiveness and i denotes the control time step. The setpoint at
i is r̂i, the prediction is ŷi, and Nu is the number of control steps
into the future that will be considered in the error optimization. In
the simulations presented here α = 1i .

The predicted response of the system can be broken up into
two components. The first is the response of the system if the
control action remains constant (^′)y . The second component is the
change in the response of the system due to a change in the

Fig. 1. Block diagram representation of nMPC.

Fig. 2. Block diagram representation of PIDnMPC.
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