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a b s t r a c t

When an autonomous robot is deployed in a structural environment to visually inspect surfaces, the
capture conditions of images (e.g. camera's viewing distance and angle to surfaces) may vary due to un-
ideal robot poses selected to position the camera in a collision-free manner. Given that surface inspection
is conducted by using a classifier trained with surface samples captured with limited changes to the
viewing distance and angle, the inspection performance can be affected if the capture conditions are
changed. This paper presents an approach to calculate a value that represents the likelihood of a pixel
being classifiable by a classifier trained with a limited dataset. The likelihood value is calculated for each
pixel in an image to form a likelihood map that can be used to identify classifiable regions of the image.
The information necessary for calculating the likelihood values is obtained by collecting additional depth
data that maps to each pixel in an image (collectively referred to as a RGB-D image). Experiments to test
the approach are conducted in a laboratory environment using a RGB-D sensor package mounted onto
the end-effector of a robot manipulator. A naive Bayes classifier trained with texture features extracted
from Gray Level Co-occurrence Matrices is used to demonstrate the effect of image capture conditions on
surface classification accuracy. Experimental results show that the classifiable regions identified using a
likelihood map are up to 99.0% accurate, and the identified region has up to 19.9% higher classification
accuracy when compared against the overall accuracy of the same image.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The typical manufacturing factory setting provides a well-
structured and predictable environment that is suitable for im-
plementing pre-planned routines on a robot to perform repetitive
tasks. However, pre-planned routines are impractical for a field
robot due to the environment changing over time and/or the robot
being freely moved within the environment. One such scenario is
steel bridge maintenance conducted by autonomous robots [1,2],
as shown in Fig. 1.

In steel bridge maintenance, a mobile robot is moved to various
sections of a bridge to conduct grit-blasting for the removal of rust
and old paint from steel surfaces in preparation for repainting. In
order for the robot to grit-blast autonomously in each position, an
up-to-date geometric map of the surrounding environment is
provided to the robot such that a plan for grit-stream trajectory
and robot movements can be newly generated. At present, there
are well-developed approaches for a robot to explore and build an

update geometric map of an environment using a depth sensor
mounted on the robot's end-effector [3,4]. Provided with a geo-
metric map of the environment, a robot can only autonomously
grit-blast all the surfaces without the capability to target specific
surface areas based on surface-type/conditions (e.g. mildly rusted
and heavily rusted).

For a robot to be capable of selectively grit-blasting specific
surface areas, it must also explore and inspect the surface's con-
dition. One possible approach to this is to mount a vision camera
to the robot's end-effector and capture images during (1) pre-grit-
blasting for identifying specific surface areas to grit-blast based on
rust grading, and (2) post-grit-blasting for assessing whether the
required steel cleanliness has been achieved or re-blasting is ne-
cessary. A robot can inspect the surfaces in the captured images by
using a classifier trained with surface samples from a visual in-
spection standard such as the rust grading and steel cleanliness
visual metrics provided in BS EN ISO 8501-1 [5]. In this way, in-
formation about the surface's condition can be produced that will
enable a robot to intelligently (re)grit-blast specific surface areas
on a bridge.

A review of vision-based classification approaches shows that
colour and/or texture features can be extracted to accurately dis-
tinguish between various surface-types (surface appearance of
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materials) [6], and steel surface conditions [7,8]. Colour features
have been shown to provide high resolution (per pixel) classifi-
cation for rust. In the simplest implementation, RGB intensity
values can be directly used as the features to classify rust from a
single colour background surface [9]. However, RGB intensity va-
lues are shown to be affected by illumination changes and thus
further investigation into improving classification accuracy for
non-uniformly illuminated surfaces have been performed in [10]
and [11]. The investigation examined 14 colour-spaces and found
that the anbn colour component from the CIELab colour-space can
provide high classification accuracy for rust in non-uniformly il-
luminated images.

Texture features can also be extracted to accurately classify
non-uniformly illuminated surfaces [12] and are typically pre-
ferred in applications where it is difficult to classify based on
colour features (i.e. surface-types that have similar colour ap-
pearance). The main disadvantage of using texture features when
compared against colour features is that an image region (n�n
pixels) is required to extract the features; thus reducing the re-
solution of the classification results. However, due to the inter-
pixel information provided from an image region, it is possible to
extract richer features to distinguish a wider range of surface-
types. Approaches for extracting texture features can be cate-
gorised into four main groups including statistical, geometrical,
model-based and signal processing [13–15]. The work in [16] de-
monstrates the use of these approaches to extract texture features
that accurately classifies for rust grading on steel surfaces. Speci-
fically, texture feature extraction approaches such as Gray Level
Co-occurrence Matrix (GLCM), Fast Fourier Transform (FFT) and
Wavelet Transform (WT) have been used towards visual inspection
of bridges given the high performance in space–frequency de-
composition at different scales [17]. To summarise, a texture-based
classification approach is generally more suitable for inspecting
surface-types and surface conditions given that texture features
can distinguish a wider range of surfaces.

A review of visual inspection systems implemented in manu-
facturing environments shows that a fixed camera position is
preferred to ensure consistent image capture conditions (viewing
distance and viewing angle) for high inspection performance. For
example, a camera mounted in a fixed position on a conveyor
system has been used to achieve inspection accuracy of greater
than 90%; for marble slab grading [18] where captured images are
processed to categorise marble slabs into different aesthetic
groups, and for steel manufacturing [7,19,20] where captured
images are processed to detect surface defects on metal sheets/
strips. Essentially, by fixing the camera's position the appearance
of surface(s) in each image in terms of focus quality, spatial

resolution and perspective distortion will remain consistent and a
classifier can be trained using pre-captured samples to accurately
classify subsequently captured samples.

However, in field applications consistent image capture con-
ditions cannot be assumed. Examples of field applications are a
camera being mounted onto a robot end-effector for autonomous
bridge inspection [1,2], welding inspection [21,22] and parts as-
sembly [23]. As a result, when a classifier is trained with samples
captured at a limited range of viewing distances and angles (i.e.
surface samples provided in a visual standard guide, BS EN ISO
8501-1), the inspection performance can be affected when the
image capture conditions are varied due to un-ideal robot poses
selected to position the camera in a collision-free manner. Pre-
sently an autonomous bridge surface inspection robot [24] is
capable of inspecting for rust on steel surfaces by using colour
features which are not affected by surface appearance changes
(e.g. focus quality, spatial resolution and perspective distortion).
However, in order to extend the robot to inspect for different rust
grading and cleanliness on steel surfaces, texture-based classifi-
cation will be required and consequently an approach for identi-
fying regions in an image that are classifiable. A classifier's pre-
diction certainty cannot be used to identify the classifiable regions
because of the potential surface appearance changes between
training and test samples. For example, an out-of-focus (blurry)
test sample of a blasted metal surface may extract texture features
that resemble the timber surface. As a result, the classifier will
misclassify this sample as timber and “falsely” have a high degree
of prediction certainty.

This paper presents an approach to calculate a value that re-
presents the likelihood of a pixel being classifiable by a classifier
trained with a limited dataset. The likelihood is estimated based
on the assumption that identical capture conditions used for
capturing the training dataset and the test images will produce
accurate results and deteriorate if the capture conditions are var-
ied. This likelihood value can be calculated for each pixel in an
image to form a likelihood map and used to identify regions in the
image that are classifiable. The capture conditions necessary for
calculating the likelihood value can be obtained by capturing ad-
ditional depth data that maps to an image (collectively referred to
as a RGB-D image). The subsequent sections of this paper are or-
ganised as follows: Section 2 details the overview of the approach,
the process for calculating the image capture conditions of viewing
distance and viewing angle, the process for selecting threshold
values based on surface appearance factors and the process for
calculating the likelihood value using the identified threshold
ranges. Section 3 presents three experiments conducted to test the
proposed approach and the corresponding experimental results,
and Section 4 provides a discussion and the conclusion

2. The approach

2.1. Overview

Fig. 2 shows the overview of the approach for identifying
classifiable regions of an image by generating a likelihood map.
From a RGB-D image captured to inspect a surface(s), the depth
image is used to calculate the capture conditions including the
viewing distance dc, and the viewing angle θc, for each pixel (de-
tailed in Section 2.2). Provided with the viewing distance and
viewing angle for each pixel, and a set of calibrated threshold
values {n1, f1, n2, f2, τθ} (detailed in Section 2.3), the likelihood value
for each pixel is calculated to produce a likelihood map (detailed in
Section 2.4). Finally, the classifiable image regions in the map can
be identified.

Fig. 1. An autonomous robot for grit-blasting steel bridge structures.
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