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a b s t r a c t

Model-based, torque-level control can offer precision and speed advantages over velocity-level or
position-level robot control. However, the dynamic parameters of the robot must be identified
accurately. Several steps are involved in dynamic parameter identification, including modeling the
system dynamics, joint position/torque data acquisition and filtering, experimental design, dynamic
parameters estimation and validation. In this paper, we propose a novel, computationally efficient and
intuitive optimality criterion to design the excitation trajectory for the robot to follow. Experiments are
carried out for a 6 degree of freedom (DOF) Staubli TX-90 robot. We validate the dynamics parameters
using torque prediction accuracy and compare to existing methods. The RMS errors of the prediction
were small, and the computation time for the new, optimal objective function is an order of magnitude
less than for existing approaches.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Contemporary applications of robot arms demand high precision
and speed, e.g. advanced manufacturing [1] and multi-robot system
control [2]. These applications typically require advanced model-
based control algorithms or control algorithms based on torque input
[3]. Such control schemes require accurate knowledge of the dynamic
parameters of robot arm. However, many robot manufacturers do not
provide these parameters or provide only partial information [4,5].
Experimental identification or calibration is therefore the only
reliable approach to obtain this information.

Many models of robot dynamics have been proposed in the
context of dynamic parameter identification. Gautier suggested
the energy identification model in [6] and the power model in [7].
The main advantage of these models is that they depend only on
functions of joint position and velocity. Researchers have
employed inverse dynamic models of robot arms to identify
dynamic parameters [5,8–10]. Inverse dynamic models provide
more information than the energy or the power model. This
additional information allows the creation of well-conditioned
over-determined regressor matrices.

There are several ways to estimate the dynamic parameters.
Least squares estimation methods [6,11] and maximum likelihood
estimation methods [9] are popular approaches. Other approaches
include the extended Kalman filter in [12], the total least squares is

developed in [13], the online recursive total least squares estima-
tion method in [14], the weighted least squares estimation method
[15,16], nonlinear least squares optimization [8], and the instru-
mental variable approach developed in [17]. Generally, joint angle
and torque/current data can be measured directly, but joint
velocity and acceleration must be estimated. There are several
approaches to estimate velocity and acceleration, including obser-
ver/estimators, zero-phase band pass filter, low-pass filters and
Kalman filters [6,8,18].

Designing an excitation trajectory is an essential and sig-
nificant part of improving estimation accuracy. A fifth-order
polynomial trajectory in joint space was proposed as an excita-
tion trajectory in [19]. To enable repeatable identification
experiments and improve the signal to noise ratio, periodic
excitation trajectories based on Fourier series [9], modified
Fourier series [5] and finite sum of harmonic sine functions
[20] have been proposed. Two optimality criteria have been
popular to find optimal periodic trajectories. One is based on
minimization of the condition number of the regressor matrix
[5,20,21]; another is based on minimization of log fdetð�Þg of the
Fisher information matrix [20,9]. Since each Fourier series
contains 2� Niþ1 parameters [22], it can be difficult to solve
the optimization problem. Each Fourier series must meet con-
straints on the trajectory such as initial and final conditions and
bounds on position, velocity and acceleration.

Model validation is also an important procedure for confirming
the parameter estimation results. Experiment results can directly
demonstrate the identification result [9]. Janot et al. discussed the
importance of statistical analysis in validating results [17].
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A primary contribution of this paper is a novel, simple and
intuitive optimal criterion to design the exciting trajectory. Our
approach reduces the number of terms that define the trajectory,
and we employ Hadamard's inequality, which states that the
determinant of a positive definite matrix is less than or equal to
the product of its diagonal entries, thus simplifying the optimiza-
tion problem. For a m� n rectangular matrix W, the complexity of
calculating the upper bound of the determinate using Hadamard's
is O(n), but the complexity of calculating the determinate of WTW
is Oðmn2þn3Þ and the complexity of calculating the condition
number of W is Oðmn2Þ. The use of Hadamard's inequality offers a
great reduction in complexity and calculation time in finding the
optimal parameters.

We compare our outcome with the two popular optimization
functions in terms of computational complexity. Our proposed
trajectory performs as well as those found by the existing
optimization functions in terms of root mean squared error, and
requires an order of magnitude less computation time. We use our
algorithm to determine the dynamic parameters of the Staubli TX-
90 robot manipulator. To our knowledge, the parameters of this
robot have not previously been determined, and this represents a
second major contribution of this paper.

The remainder of this paper is organized as follows. Section 2
introduces the background information regarding our experimen-
tal dynamic calibration methods. Section 3 describes the proposed
excitation trajectory and new optimality criterion. Section 4
provides simulation results that verify the proposed estimation
algorithm. Finally, the conclusion is given in Section 5.

2. Background

Our approach employs the inverse dynamic model and the least
squares (LS) estimation method to estimate inertia parameters of
robot arm. We also use a zero-phase low pass filter to process
position data and velocities are calculated with a central difference
algorithm. Accelerations are calculated with the central difference
algorithm and followed by smoothing, which is performed by the
Robust LOcal polynomial regrESSion (RLOESS) smoother [23]. RLOESS
has gained widespread acceptance in statistics as an appealing
solution for fitting smooth curves to noisy data. The overall proce-
dure of identification is illustrated in Fig. 1

2.1. Dynamic identification model

The dynamic model of an n-link rigid robot can be derived
using the Euler–Lagrange or the Newton–Euler formulation [24].
The mathematical model in joint space [25] is given by

MðqÞ €qþCðq; _qÞ _qþτf ¼ τ ð1Þ

where qðtÞ ¼ ½q1ðtÞ; q2ðtÞ;…; qnðtÞ�T ARn is a vector of joint position,
and _qðtÞARn and €qðtÞARn are the joint velocity and the accelera-
tion vectors, respectively. MðqÞARn�n is the mass or inertia matrix
of the robot, Cðq; _qÞ contains Coriolis, centrifugal and gravitational
force terms, τf ðtÞARn is the friction forces, and τðtÞARn represents
the joint torque vector, which is the input to the system. We model
the friction forces as

τf ¼ f v _qþ f c sgnð _qÞ ð2Þ

where fv and fc are constant n� n diagonal matrices representing
viscous and Coulomb friction parameters, respectively, and sgnð�Þ
is the sign function.

The modified Denavit and Hartenberg (MDH) convention [26]
allows us to rewrite the mathematical model (1) in a linearly
parametrized form [24] with Ns standard parameters:

τ¼ Ysðq; _q; €qÞβs ð3Þ
where Ysðq; _q; €qÞARn�Ns is a regressor matrix and βsARNs�1 is a
vector of standard parameters. For rigid robots, there are 13
standard parameters by each link and joint, including the six
components of the inertia matrix of link j at the origin of frame j
ðIxxj; Ixyj; Ixzj; Iyyj; Iyzj; IzzjÞ, the first moments of link j ðmxj;myj;mzjÞ,
the mass ðmjÞ of link j, the total inertia moment ðIajÞ for rotor and
gears of actuator j and viscous and Coulomb friction coefficients
ðf vj; f cjÞ [27].

The base parameters are the minimal set of identifiable para-
meters to parametrize the dynamic equation. They are obtained by
regrouping some of the standard parameters by means of linear
relations [11,28] or a numerical method with respect to the QR
decomposition [29]. Then the dynamics equation with Nb identifi-
able base parameters can be addressed as

τ¼ Yðq; _q; €qÞβ ð4Þ
where βARNb are the base parameters and Yðq; _q; €qÞARn�Nb is a
subset of the independent columns of Ys [30].

An excitation reference trajectory must be used to persistently
excite the given system. In this work, we employ a periodic trajectory.
Assume that the joint positions and motor torques are measured at a
sampling frequency of ωs, and denote the kth sampling time as tk. If
the fundamental frequency of the trajectories is wf, we can collect
M¼ωs=wf samples over one period T. These measurements can be
used to obtain an over-determined set of equations [31]:

Γ¼Wβþρ ð5Þ
where

W¼

Yðqðt1Þ; _qðt1Þ; €qðt1ÞÞn�Nb

Yðqðt2Þ; _qðt2Þ; €qðt2ÞÞn�Nb

⋮
YðqðtMÞ; _qðtMÞ; €qðtMÞÞn�Nb

2
66664

3
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Fig. 1. The proposed parameter identification process.
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