

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 276 (2007) 130–136

Mechanism of acrylonitrile decomposition over Cu-ZSM-5

Tetsuya Nanba*, Shouichi Masukawa, Junko Uchisawa, Akira Obuchi

National Institute of Advanced Industrial Science and Technology (AIST), Research Center for New Fuel and Vehicle Technology, 16-1 Onogawa, Tsukuba 305-8569, Japan

Received 26 April 2007; received in revised form 26 June 2007; accepted 27 June 2007 Available online 4 July 2007

Abstract

The mechanism of acrylonitrile (AN) decomposition, that is, conversion of the nitrogen atoms in AN molecules to N_2 , over Cu-ZSM-5 was investigated. Oxygen was found to be necessary for AN decomposition and H_2O in the reactant gas enhanced the reaction between AN and O_2 . The dependence of AN decomposition on contact time indicated that HCN, HNCO, NH₃, and NO_x behaved like intermediates. Temperature-programmed surface reaction of adsorbed AN revealed that H_2O suppressed desorption of AN and lowered the temperature of N_2 evolution. In situ diffuse reflectance infrared Fourier transform spectroscopy revealed that AN was mostly converted to isocyanate (-NCO), which was probably converted to adsorbed NH₃ by hydrolysis. N_2 was formed by the reaction of adsorbed NH₃ and adsorbed nitrate or by oxidation of adsorbed NH₃. © 2007 Elsevier B.V. All rights reserved.

Keywords: Acrylonitrile; Decomposition; Cu-ZSM-5; Isocyanate; Oxidation; Hydrolysis

1. Introduction

Many kinds of volatile organic compounds (VOC) are becoming environmental problems because of their hazardous properties, such as carcinogenicity. For example, acrylonitrile (AN), a nitrogen-containing VOC, is reported to be carcinogenic [1]. Incineration and catalytic combustion are the most common methods for treatment of exhaust VOCs [2]. In the former case, the treatment temperature is too high to prevent NO_x ($NO+NO_2$) formation. The operation temperature for catalytic combustion is lower, but the effluent from nitrogen-containing compounds is liable to contain more-harmful nitrogen-containing byproducts, such as HCN [3]. Therefore, the development of a complete purification process for nitrogen-containing VOCs that produces only CO_2 , H_2O , and N_2 is necessary.

We recently reported that Cu-ZSM-5 is a promising catalyst for the decomposition of AN [4,5]. This catalyst shows complete conversion of AN with a N₂ selectivity of 80% or more at temperatures higher than 350 °C. Isolated Cu²⁺ ions were determined to be the active sites and square planar type Cu²⁺ ions show particularly high activity. In addition, the redox property

between Cu^{2+} and Cu^{+} is responsible for the catalytic activity. In this study, we focused on the mechanism of AN decomposition to form N_2 over Cu-ZSM-5.

2. Experimental

The details of the preparation method and the characteristics of the Cu-ZSM-5 used have been described elsewhere [5]. The catalyst used in this study was 2.3 wt% Cu-ZSM-5, which has an ion-exchange ratio of 57% and a specific surface area of 290 m²/g. It consists of isolated Cu²⁺ ions (square planar and square pyramidal) without a CuO phase and the extent of Cu⁺ ions is small.

The catalytic activity was tested in a fixed-bed flow reactor system at atmospheric pressure. The catalyst $(0.03-0.2\,\mathrm{g})$ was placed in a tubular quartz reactor. The flow rate of the reactant gas was $100-280\,\mathrm{ml/min}$, corresponding to W/F = $0.006-0.12\,\mathrm{g}$ s/ml (SV = $15,000-280,000\,\mathrm{h^{-1}}$). The reactant gas was composed of approximately $200\,\mathrm{ppm}$ AN, 0-10% O₂, and 0-2% H₂O with He as a balance gas. Gaseous AN was supplied to the reactant gas by passage of a specified flow rate of He through liquid AN maintained at $-18\,^{\circ}$ C. The effluent gas was analyzed by gas chromatography and Fourier transform infrared (FT-IR) spectroscopy. The gas chromatograph (Agilent; M200) was equipped with an MS-5A PROT column (for N₂ and CO analysis), a

^{*} Corresponding author. Tel.: +81 29 861 8288; fax: +81 29 861 8259. E-mail address: tty-namba@aist.go.jp (T. Nanba).

Fig. 1. Effect of feed gas composition on AN conversion (a) and N_2 selectivity (b) over Cu-ZSM-5: approximately 200 ppm AN + 5% O_2 (\blacksquare), approximately 200 ppm AN + 5% O_2 + 0.5% O_2 + 0.5%

PolaPROT Q column (for CO_2 and N_2O analysis), and a thermal conductivity detector for each column. An FT-IR spectrometer (Nicolet; Magna 560), which was equipped with a multireflection gas cell (Gemini Specialty Optics; Mercury Series, optical path length = 2 m), and a mercury cadmium telluride detector, was used for the analysis of gaseous NO, NO_2 , AN, and other nitrogen-containing products.

Temperature-programmed surface reaction (TPSR) of adsorbed AN was carried out with the apparatus used for the activity tests. After pretreatment in 5% O_2 at 500 °C for 2 h, the sample was cooled to 50 °C in He, exposed to an AN flow (approximately 200 ppm) for 1 h, and then heated to 600 °C at 5 °C/min in 160 ml/min of 1% O_2 or 1% $O_2 + 0.5\%$ H_2O .

The changes in the surface species on the catalysts under conditions similar to those used for TPSR were observed by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with a Nexus 870 FT-IR spectrometer (Nicolet) equipped with a diffuse reflectance cell (Spectratech; Diffuse Reflectance 9067). The sample was pretreated in 5% $\rm O_2$ at 500 °C for 30 min in the cell and then background spectra were obtained at 200 °C and room temperature in a 1% $\rm O_2$ /He flow.

Then AN was adsorbed at room temperature under an AN flow (approximately 300 ppm). After He purge for 15 min, the temperature was raised at 10 °C/min under a 1% O_2 or 1% $O_2 + 0.5$ % H_2O flow. After a predetermined temperature above 200 °C was reached, the sample was cooled to 200 °C, and the spectrum was measured. Then the sample was heated again to a higher temperature than before and the spectrum was measured again.

3. Results and discussion

3.1. Effect of feed gas composition on AN decomposition activity

Fig. 1 shows the AN decomposition activity of Cu-ZSM-5 for three different feed gas compositions. The activity in the $AN + O_2 + H_2O$ reaction was higher than that in the $AN + O_2$ reaction. The $AN + H_2O$ reaction exhibited the lowest AN conversion and negligible N_2 formation. This result indicates that O_2 was essential for AN decomposition to N_2 .

The effects of the concentrations of O_2 and H_2O in the $AN + O_2 + H_2O$ reaction were investigated at 350 °C (Fig. 2).

Fig. 2. Dependence of AN decomposition activity on the concentrations of O_2 (a) and H_2O (b): AN conversion (lacktriangle) and selectivities of O_2 (O), O_2O (O), O_3O (O), O_3O (O), O_3O (O), O_3O (O), O_3O (O), and acetonitrile (O). Catalyst weight, O_3O (O), and acetonitrile (O). Catalyst weight, O_3O (O), O_3O (O), and O_3O (O), and O_3O (O), O_3O (O), O0, O0

Download English Version:

https://daneshyari.com/en/article/68683

Download Persian Version:

https://daneshyari.com/article/68683

<u>Daneshyari.com</u>