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a b s t r a c t

In this paper, the control of flexible-joint robotic manipulators while avoiding actuator saturation is
investigated. Several proportional derivative controllers are developed, all of which disallow actuator
saturation by guaranteeing that the applied torque is less than a specified maximum value. In particular,
a Gibbs parameterization of the joint angles is included in the control laws, which allows for an
increased control torque as compared to an Euler angle parameterization. An equilibrium point of the
closed-loop system is proven to be asymptotically stable using the Lyapunov stability analysis. Moreover,
the proposed control laws do not require any knowledge of the manipulator's mass, stiffness, or
dissipation properties, and as such, are robust to modelling errors. The proposed controllers are tested
on a single-link flexible-joint manipulator experimentally and on a two-link flexible-joint manipulator in
simulation, and are compared to the performance of controllers found in the literature.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Robotic manipulators are used extensively in many industries
for repeatable tasks such as robotic welding and automated
assembly. The joints of these manipulators will have a certain
amount of flexibility because the gearing or belt drives that
transmit torque from the actuators to the links have a finite
stiffness [1]. In most cases this joint flexibility is left unmodelled
and uncontrolled [1,2]. In order to avoid excitation of the natural
frequencies of a manipulator's flexible joints, manipulator opera-
tors often reduce the acceleration of a maneuver and then wait for
any vibrations to decay naturally [3]. In systems with limited
natural damping this can take a significant amount of time, which
is highly undesirable. Several authors have developed controllers
for flexible-joint manipulators using widely varying techniques
[4–10]. Some of these include passivity-based control [4,8],
proportional-derivative (PD) control [5], and adaptive control [6,9].

A limiting factor in the control of flexible-joint robotic manip-
ulators is actuator saturation. Actuators can only provide a finite
amount torque to the manipulator being controlled, which can
lead to performance limitations [11]. Unfortunately, powerful
motors are generally large, heavy, and costly. Increasing the size
of the motors, and hence the mass of the system, results in
increased power requirements, as well as possible performance

limitations [12]. For this reason, somewhat smaller or at least
modestly sized motors are used in practice, resulting in restricted
joint torques. As such, avoiding actuator saturation while simulta-
neously assuring asymptotic stability of the closed-loop equili-
brium point is of great interest. Control laws that incorporate
actuator saturation avoidance in the control of robotic manipula-
tors have been considered in [13–16]. Hyperbolic tangent func-
tions [13–16] are often used, as well as arctangent functions [14].
In the context of spacecraft attitude control, actuator saturation
has been studied in [17–19]. In particular, the authors of [17]
propose a PD control law that accounts for actuator saturation
using a bounded saturation function.

The contribution of this paper is the formulation of two PD
controllers based on the previous work of [17] for use on flexible-
joint robotic manipulators. These controllers will be designed to
disallow actuator saturation, while simultaneously guaranteeing
asymptotic stability about a desired equilibrium point of the
closed-loop system. Specifically, Gibbs parameters will be used
in the control formulation, which will allow for greater propor-
tional control further away from the desired set point compared to
the use of Euler angles. Several authors have used a quaternion
parametrization to describe the orientation of the end-effector
[20–22], but to our knowledge the use of Gibbs parameters or
quaternions has yet to be considered to parameterize the joint
angles. As such, an additional contribution of this paper is the use
of Gibbs parameters in the formulation of saturation controllers
for robotic manipulators, which allows us to take advantage of the
increased relative proportional control effort that comes from
using Gibbs parameters instead of Euler angles. This increase in
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relative control effort will be expanded upon in Section 3. The
proposed controllers will be compared in simulation and experi-
mental testing to controllers found in the literature. This paper
will focus on planar robotic manipulators, since the torque needed
to overcome gravitational forces is not explicitly accounted for.
This paper builds upon the preliminary results presented in [23].
The present work is significantly different than that of [23], as
more sophisticated manipulators are now considered, the closed-
loop stability proofs have been generalized, and the PD control
gains can be chosen independently for each manipulator joint, and
additional PD gains have been included in the control laws to
allow for further tuning of the controllers.

The remainder of this paper is as follows. In Section 2 the
dynamic model of a multi-link robotic manipulator is presented. In
Section 3 the proposed controllers are presented and shown to
render the closed-loop system asymptotically stable, even in the
presence of parameter uncertainty. In addition, the Gibbs para-
meter is introduced. An example involving a single-link manip-
ulator is presented in Section 4. The proposed control laws are
simplified for the single-link case, and the experimental results are
presented. A numerical example involving a two-link manipulator
is given in Section 5, which includes simulation results. Final
remarks and possible future work are presented in Section 6.

2. System dynamics

Consider the multi-link flexible-joint manipulator shown in
Fig. 1, whose equations of motion are [4–6,13,24]

MðqÞ €qþD _qþKq¼ B̂τcþfnonðq; _qÞ; ð1Þ
where M¼MT40 is the system's mass matrix, K¼Ktrans40 is
the system's stiffness matrix, D¼DTZ0 is the system's damping
matrix, B̂ ¼ ½1 0�T is the column vector that distributes the applied

torques to the system, τc ¼ ½τc;1 τc;2 ⋯ τc;n�T are the torques input
to the system, fnonðq; _qÞ ¼ �Cðq; _qÞ _q is the column vector of
nonlinear forces, 1 is the identity matrix of appropriate dimension,
and q¼ ½θ1 θ2 ⋯ θn α1 α2 ⋯ αn�T are the generalized coordinates
of the system. The angle θi; i¼ 1;2;…;n is the joint angle of the
ith hub with respect to the previous link and the angle
αi; i¼ 1;2;…;n is the angle of the ith link with respect to the ith
hub. Throughout this paper the subscript i will denote the ith hub
and link. Gravitational forces have been neglected in this dynamic
model, but could be accounted for by employing a feedforward
control term as described in [4]. Note that the total energy of this
system is E¼ 1

2
_qTM _qþ1

2q
TKq and the time derivative of the total

energy is _E ¼ � _qTD _qþ _qTB̂τc . Additionally, it can be shown that
for serial manipulators, the matrix ð _M�2CÞ is skew-symmetric
[25].

In Fig. 1 ks;i is the stiffness of the ith flexible joint, J2i�1 is the
second moment of mass of the ith hub, J2i is the second moment of
mass of the ith link, and mp is the mass of the payload.

3. Control formulation

3.1. Gibbs parameterization

To motivate the structure of the proposed control law in the
following section, the Gibbs parameter is introduced. Recall that
the Gibbs parameter, pAR3, is related to the Euler axis/angle
variables by [26]

p¼ a tan ðθ=2Þ; ð2Þ
where a is the Euler axis and θ is the Euler angle. The relationship
between the angular velocity and the time rate of change of the
Gibbs parameter is [26]

_p ¼ 1
2 ð1þp�þppTÞω; ð3Þ

where ω is the three-dimensional angular velocity of a body.
Considering only rotation about a single axis, Eqs. (2) and (3)
simplify to

p¼ tan ðθ=2Þ; ð4Þ

_p ¼ 1
2 ð1þp2Þω: ð5Þ

The joint angles of the flexible manipulator can be parameterized
as pi ¼ tan ðθi=2Þ, i¼ 1;2;…;n and collected as p¼ ½p1 p2 ⋯ pn�T.
For the remaining sections of the paper, p will represent the
column matrix composed of the scalar Gibbs parametrization of
each individual flexible-joint angle, not a vector representing the
three-dimensional Gibbs parameterization of a single joint. Simi-
larly, ω¼ _θ ¼ ½ _θ1

_θ2 ⋯ _θn�T will represent the column vector
composed of the scalar joint rates, and not a three-dimensional
angular velocity. The vector containing the scalar joint angles is
given by θ¼ ½θ1 θ2 ⋯ θn�T. A plot illustrating Eq. (4) is given in
Fig. 2. Notice that jpjZ jθ=2j for all θ and jpjc jθ=2j as θ
approaches 1801, where θ=2 is used to match the linearization of
p about θ¼ 01. This property motivates the use of the Gibbs
parameter instead of an Euler angle in a proportional control
law, as additional control effort is demanded when the joint is
further from the desired set point. The property shown in Eq. (5)
will be useful in proving stability in Section 3.3.

3.2. Saturation avoidance control laws

Consider a PD control law of the following form:

τc ¼ upþud; ð6Þ
where up ¼ ½up;1 up;2 ⋯ up;n�T is the proportional control and
ud ¼ ½ud;1 ud;2 ⋯ ud;n�T is the derivative control. The control effortFig. 1. Schematic of a multi-link flexible-joint robotic manipulator.
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