
JID:BDR AID:61 /FLA [m5G; v1.218; Prn:23/05/2017; 14:35] P.1 (1-11)

Big Data Research ••• (••••) •••–•••

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

A Methodology for Spark Parameter Tuning ✩

Anastasios Gounaris a,∗, Jordi Torres b

a Department of Informatics, Aristotle University of Thessaloniki, Greece
b Department of Computer Architecture, Technical University of Catalonia, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 January 2017
Received in revised form 24 April 2017
Accepted 4 May 2017
Available online xxxx

Keywords:
Spark configuration
Parameter tuning
Shuffling

Spark has been established as an attractive platform for big data analysis, since it manages to hide 
most of the complexities related to parallelism, fault tolerance and cluster setting from developers. 
However, this comes at the expense of having over 150 configurable parameters, the impact of 
which cannot be exhaustively examined due to the exponential amount of their combinations. The 
default values allow developers to quickly deploy their applications but leave the question as to 
whether performance can be improved open. In this work, we investigate the impact of the most 
important tunable Spark parameters with regards to shuffling, compression and serialization on the 
application performance through extensive experimentation using the Spark-enabled Marenostrum III 
(MN3) computing infrastructure of the Barcelona Supercomputing Center. The overarching aim is to guide 
developers on how to proceed to changes to the default values. We build upon our previous work, where 
we mapped our experience to a trial-and-error iterative improvement methodology for tuning parameters 
in arbitrary applications based on evidence from a very small number of experimental runs. The main 
contribution of this work is that we propose an alternative systematic methodology for parameter tuning, 
which can be easily applied onto any computing infrastructure and is shown to yield comparable if not 
better results than the initial one when applied to MN3; observed speedups in our validating test case 
studies start from 20%. In addition, the new methodology can rely on runs using samples instead of runs 
on the complete datasets, which render it significantly more practical.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Spark [1,2] has emerged as one of the most widely used frame-
works for massively parallel data analytics. In summary, it im-
proves upon Hadoop MapReduce in terms of flexibility in the 
programming model and performance [3], especially for iterative 
applications. It can accommodate both batch and streaming ap-
plications, while providing interfaces to other established big data 
technologies, especially regarding storage, such as HDFS and NoSQL 
databases. Finally, it includes components for SQL-like processing, 
graph processing, machine learning and data mining. However, its 
key feature is that it manages to hide the complexities related to 
parallelism, fault-tolerance and cluster setting from end users and 
application developers. This feature renders Spark practical for use 
in real-life data science and big data processing applications.

To support all these, Spark execution engine has been evolved 
to an efficient albeit complex system with more than 150 config-

✩ This article belongs to Big Data & Neural Network.

* Corresponding author.
E-mail addresses: gounaria@csd.auth.gr (A. Gounaris), torres@ac.upc.edu

(J. Torres).

urable parameters. The default values are usually sufficient for a 
Spark program to run, e.g., not to run out of memory without hav-
ing the option to spill data on the disk and thus crash. But this 
gives rise to the following research question: “Can the default con-
figuration be improved and, if yes, how better configurations can be set 
efficiently?”

The aim of this work is firstly, to provide evidence that the 
answer to the first part of the above question is affirmative, and 
then, to answer the second part in an efficient manner. Clearly, 
it is practically impossible to check all the different combinations 
of parameter values for all tunable parameters. Therefore, tuning 
arbitrary Spark applications by inexpensively navigating through 
the vast search space of all possible configurations in a principled 
manner is a challenging task. Very few research endeavors focus 
on issues related to understanding the performance of Spark ap-
plications and the role of tunable parameters [4–6]. For the latter, 
Spark’s official configuration guides1 and tuning2 guides and tuto-
rial book [7] provide a valuable asset in understanding the role of 
every single parameter.

1 http://spark.apache.org/docs/latest/configuration.html.
2 http://spark.apache.org/docs/latest/tuning.html.

http://dx.doi.org/10.1016/j.bdr.2017.05.001
2214-5796/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.bdr.2017.05.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:gounaria@csd.auth.gr
mailto:torres@ac.upc.edu
http://spark.apache.org/docs/latest/configuration.html
http://spark.apache.org/docs/latest/tuning.html
http://dx.doi.org/10.1016/j.bdr.2017.05.001


JID:BDR AID:61 /FLA [m5G; v1.218; Prn:23/05/2017; 14:35] P.2 (1-11)

2 A. Gounaris, J. Torres / Big Data Research ••• (••••) •••–•••

Understanding the role of a parameter does not necessarily 
mean that the impact of each parameter on the performance of 
arbitrary applications is understood as well. Moreover, such an 
understanding does not imply that tuning is straightforward. An 
added complexity stems from the fact that most parameters are 
correlated and the impact of parameters may vary from applica-
tion to application and it will also vary from cluster to cluster. In 
this work, we experiment with the MareNostrum III (MN3) petas-
cale supercomputer at the Barcelona Supercomputing Center. After 
configuring the cluster in an application-independent way accord-
ing to the results in [6], we examine the impact of configurable 
parameters with regards to shuffling, compression and serializa-
tion on a range of applications with a view to deriving a simple 
yet systematic tuning methodology that can be applied to each ap-
plication separately.

We build upon our previous work in [8], where: (i) We iden-
tified the most important parameters with regards to shuffling, 
compression and serialization in terms of their potential impact 
on performance and we tested them on MN3. The number of these 
parameters is 12. (ii) We summarized our experience in a tuning 
methodology to be applied on an individual application basis. The 
methodology treats applications as black boxes, follows an efficient 
trial-and-error approach that involves a low number of experimen-
tal runs for just 10 different configurations at most, and leverages 
the correlation between different parameters.

This article is a heavily extended version of the results in [8]
(also repeating all experiments from scratch). The new contribu-
tions are summarized as follows:

• We provide new experimental evidence that the default Spark 
configuration leaves room for performance improvements 
when tuning the parameters under investigation. We also eval-
uate how these parameters are correlated.

• We propose a new tuning methodology that can be applied 
to any computing infrastructure; the new methodology serves 
as an alternative to the one in [8], which mostly reflected our 
experience with MN3, did not profile parameter correlations 
explicitly and is questionable whether it generalizes efficiently.

• We validate and compare the performance impacts of the new 
methodology and the one in [8]. Our new proposal can yield 
comparable if not better results than the initial one when ap-
plied to MN3. The observed speedups in our validating test 
case studies start from 20% and reach up to more than 4 times, 
when compared against the default MN3 configuration.

• With a view to rendering the proposal more practical, we pro-
vide evidence that the new methodology can rely on runs 
using samples instead of runs on the complete datasets.

The remainder of this work is structured as follows. The next 
section provides an overview of Spark and of the known results 
to date with regards to Spark tuning. In Section 3, we explain the 
chosen parameters and we present the methodology in [8]. Our 
new methodology along with its instantiation on MN3 is presented 
in Section 4. Section 5 deals with the evaluation of the methodolo-
gies. We conclude in Section 6.

2. Overview of existing results for Spark configuration

Apache Spark is an open source massively parallel comput-
ing framework. It provides an interface enabling users to develop 
and deploy applications to run in parallel on clusters of machines, 
which typically adopt the shared-nothing parallel architecture [9]. 
For cluster management, the list of supported options includes 
deploying on an Amazon EC2 cloud cluster instantiated on the 
fly, employing a third-part manager, such as YARN or MESOS, or 

launching a standalone cluster. Overall, there are over 150 tunable 
parameters that define execution details.

2.1. Spark basics

Spark operates on data collections abstracted as Resilient Dis-
tributed Datasets (RDDs), which are partitioned across several 
nodes. A Spark application consists of two types of operations, 
namely transformations and actions. The former apply a function on 
each RDD element and result in a new RDD. Actions trigger the ex-
ecution of such functions and produce meaningful results. For each 
action in the application a job is performed. For each job, typically 
several RDD transformations need to be computed. Spark’s sched-
uler creates a physical execution plan for the job based on the 
directed acyclic graph (DAG) of transformations. The physical plan 
is divided into stages. A stage is a sequence of transformations that 
can be pipelined. The sequence of computations defined by a stage
instantiated over a single data partition is called a task. A task is 
the actual unit of execution of the physical plan. The task sched-
uler assigns tasks to parallel workers via the cluster manager. On 
each worker node, each applications launches its own executors, 
which are responsible for task execution.

Data may be repartitioned across RDDs. This may be done as a 
result of a specific transformation, such as groupByKey and sort-
ByKey, which result in a new RDD, where data are partitioned 
across machines differently. This data re-distribution is commonly 
referred to as data shuffling. Data shuffling is an expensive opera-
tion. First it incurs communication cost. Second, it incurs CPU cost, 
because it involves data serialization. Third, it may incur I/O cost, 
because it may store temporary data on disk if they cannot fit in 
main memory; temporary files are kept as long as they are needed 
for fault tolerance purposes. As such, the cost is multi-dimensional, 
while memory is stressed as well.

Table 1 provides a categorization of Spark parameters. In this 
work, we target parameters belonging to the Shuffle Behavior and 
Compression and Serialization aspects, which greatly contribute to a 
Spark application’s running time, as supported by our experimental 
results, the official documentation, and the evidence provided in 
other works, such as [4,5,3]. Note that there are several other pa-
rameters belonging to categories such as Application Properties, Ex-
ecution Behavior and Networking that may affect the performance, 
but these parameters are typically set at the cluster level, i.e., they 
are common to all applications running on the same cluster of ma-
chines, e.g., as shown in [6].

Next, we summarize the known results to date with regards 
to Spark configuration. These results come from three types of 
sources: (i) academic works that aimed at Spark configuration and 
profiling; (ii) official Spark documentation and guides that build on 
top of this documentation; and (iii) academic works that include 
evaluation of Spark applications on real platforms and, as a by-
product, provide information about the configuration that yielded 
the highest performance. We also briefly discuss results on Spark 
profiling, because they directly relate to Spark configuration. The 
most relevant work to ours is the study of Spark performance on 
the MN3 in [6], which is complementary to this work and pre-
sented separately.

2.2. Optimization of Spark on MN3

The work in [6] sheds lights onto the impact of configurations 
related to parallelism. In MN3, cluster management is performed 
according to the standalone mode, i.e., YARN and MESOS are not 
used. The main results, which are reused in our work, are sum-
marized as follows. First, the number of cores allocated to each 
Spark executor has a big impact on performance and should be 
configured in an application-independent manner. In other words, 



Download English Version:

https://daneshyari.com/en/article/6868357

Download Persian Version:

https://daneshyari.com/article/6868357

Daneshyari.com

https://daneshyari.com/en/article/6868357
https://daneshyari.com/article/6868357
https://daneshyari.com

