
Big Data Research 10 (2017) 44–52

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Community Detection Algorithm for Big Social Networks Using Hybrid 

Architecture

Rahil Sharma ∗,1, Suely Oliveira 1

University of Iowa, Dept. of Computer Science, Iowa city, IA-52246, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 December 2016
Received in revised form 28 July 2017
Accepted 7 October 2017
Available online 26 October 2017

Keywords:
Community detection
Parallel distributed algorithms
Big data
Social networks

One of the most relevant and widely studied structural properties of networks is their community 
structure. Detecting communities is of great importance in social networks where systems are often 
represented as graphs. With the advent of web-based social networks like Twitter, Facebook and LinkedIn. 
community detection became even more difficult due to the massive network size, which can reach up to 
hundreds of millions of vertices and edges. This large graph structured data cannot be processed without 
using distributed algorithms due to memory constraints of one machine and also the need to achieve high 
performance. In this paper, we present a novel hybrid (shared + distributed memory) parallel algorithm 
to efficiently detect high quality communities in massive social networks. For our simulations, we use 
synthetic graphs ranging from 100K to 16M vertices to show the scalability and quality performance 
of our algorithm. We also use two massive real world networks: (a) section of Twitter-2010 network 
having ≈ 41M vertices and ≈ 1.4B edges (b) UK-2007 (.uk web domain) having ≈ 105M vertices and 
≈ 3.3B edges. Simulation results on MPI setup with 8 compute nodes having 16 cores each show that, 
upto ≈ 6X speedup is achieved for synthetic graphs in detecting communities without compromising the 
quality of the results.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

One of the most relevant and widely studied structural prop-
erties of networks is their community structure. A community in 
a network is a set of nodes that are densely connected with each 
other and sparsely connected to the other nodes in the network. 
Community detection in a network extracts the structural proper-
ties of the network [1] and the various interactions in the network 
[2]. Detecting communities in social networks is of great impor-
tance because social networks consists of patterns which can be 
viewed as independent components, with each component having 
distinct features and can be detected based on network struc-
ture. Some major applications of community detection in social 
networks are a follows: (i) help to target users for marketing pur-
poses, (ii) provide recommendations to users to connect with other 
users, join communities or forums, (iii) assist in market basket 
analysis to help group products likely to be sold together, (iv) help 
to generate user targeted advertisements.

* Corresponding author.
E-mail addresses: rahil-sharma@uiowa.edu (R. Sharma), suely-oliveira@uiowa.edu

(S. Oliveira).
1 Equal contributor.

The increasing size of social networks like Facebook, Twitter, 
LinkedIn, etc. has made community detection more difficult, with 
data size which can reach up to billions of vertices and edges. For 
example, Facebook has ≈ 1.1B users and LinkedIn has ≈ 500M
users. As a result the ability to process this large graph-structured 
data in memory of a single machine is infeasible due to time and 
memory constraints. Most of the research in community detec-
tion has been focused on shared memory based algorithms on 
SMP machines and a thorough review of the same is presented 
in [3]. Where as some fast scalable community detection algo-
rithms [4], [5], [6] which have been developed can only tackle 
network sizes which can be stored in the RAM of one machine. 
All of these algorithms adopt sequential, parallel shared-memory 
and non-distributed architectures. Processing networks with hun-
dreds of millions of vertices and billions of edges require several 
hundred gigabytes of RAM. To address this challenge, parallel dis-
tributed community detection algorithms are necessary. To avoid 
any confusion, we use the term cluster only for computer cluster; a part 
of the computer cluster will be denoted as machine or node, the objects 
in a network will be denoted as vertex and groups of vertices will be de-
noted as communities.

In this paper, we modify and extend our multi-level multi-core 
(MCML), shared-memory based community detection algorithm [5]
also explained in Section 3, to distributed memory parallel frame-

https://doi.org/10.1016/j.bdr.2017.10.003
2214-5796/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.bdr.2017.10.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:rahil-sharma@uiowa.edu
mailto:suely-oliveira@uiowa.edu
https://doi.org/10.1016/j.bdr.2017.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2017.10.003&domain=pdf


R. Sharma, S. Oliveira / Big Data Research 10 (2017) 44–52 45

work using Message Passing Interface (MPI). This hybrid (shared 
+ distributed memory) algorithm can process massive social net-
works to extract high quality communities efficiently. The main 
challenges we encountered were (1) the initial partitioning of the 
network and assigning each of these parts to different nodes in the 
parallel computers in such a way that, when community detection 
algorithm is applied on each individual node, it should not incur 
high communication overhead, (2) each node in the parallel com-
puters should intelligently reduce the size of the network partition 
assigned to it such that, after merging, the entire network should 
fit in memory of one machine and quality of the communities de-
tected is not compromised.

In this work, we integrate an existing network partitioning al-
gorithm in our hybrid algorithm’s flow so that, it will partition the 
original network into chunks to be distributed across the network 
of parallel machines, incurring minimum communication overhead 
between them. In order to minimize the probability of distributing 
vertices belonging to the same community across different ma-
chines, we use a network partitioning algorithm which tries to 
minimize the inter-partition edges [7]. After network partitioning 
and distribution, we intelligently reduce the size of every network 
partition on each machine in such a way that, when merging all 
the partitions back in the master node, the entire network can fit 
into the memory of a single master node to which we apply our 
MCML algorithm to extract high quality communities. All our sim-
ulations are done using MPI and OpenMP implementation on the 
HPC Neon cluster at the University of Iowa. The main contribution 
of this paper are as follows:

1. We develop a hybrid (shared + distributed memory) com-
munity detection algorithm, a modification and extension of 
our shared memory based MCML algorithm [5], which utilizes 
multiple cores of multiple machines and scales to hundreds of 
millions of vertices and edges without compromising quality 
of the detected communities.

2. We showcase our algorithms’ efficiency by using synthetic 
graphs ranging from 100K up to 16M vertices and also on real 
world networks like (a) section of Twitter-2010 network hav-
ing ≈ 41M vertices and ≈ 1.4B edges (b) UK-2007-05 (.uk web 
domain) having ≈ 1.2B vertices and ≈ 3.2B edges.

The structure of the remaining paper is as follows: In Section 2, 
we present an overview of related work in graph partitioning, 
community detection and parallel community detection. In Sec-
tion 3, we describe the proposed core MCML [5] and our hybrid 
algorithm for large scale community detection. Following this, in 
Section 4, we discuss and present our experimental environment, 
datasets used and results, followed by our conclusion in Section 5.

2. Related work

Network partitioning: It aims to divide the network into k-
parts in such a way that edge cuts are minimized and each par-
tition roughly has same number of vertices. Most of the network 
partitioning problems are NP-Hard [3]. One group of techniques in 
graph partitioning relies on optimizing an objective function which 
is defined as a ratio of number of intra-partition edges to number 
of inter-partition edges. Another group of partitioning techniques 
uses multi-level partitioner [7], [8] whose implementation is in 
METIS and PMETIS library respectively. There exists other partition-
ing algorithms which scales better than METIS [9], [10] but incur 
very high communication overhead leading to large runtimes. We 
plan to utilize parallel METIS to perform our initial graph parti-
tioning, due to its low communication overhead, ease of use and 
wide availability. The parallel implementation was done using GNU 
C++ and MPI.

Community Detection: This is an interesting problem in the 
domain of graph partitioning. Interest in community detection prob-
lem started with the new partitioning approach by [1], [11]; where 
the edges in the network with the maximum betweenness are 
removed iteratively, thus splitting the network hierarchically into 
communities. Similar algorithms were proposed later on, where at-
tributes like ‘local quantity’ i.e. number of loops of a fixed length 
containing the given edge [12] and a complex notion of ‘informa-
tion centrality’ [13], are used to decide removal of edges. Hierar-
chical clustering is another major technique used for community 
detection, where based on the similarity between the nodes, an 
agglomerative technique iteratively groups vertices into commu-
nities. There are different existing methods to choose the com-
munities to be merged at each iteration. Algorithms described in 
[14] and [15] start with all the nodes as individual communities 
and iteratively merge them to optimize the ‘modularity’ function. 
Many other algorithms in the literature of community detection, 
like ones proposed by [16] and [17] rely heavily on modularity 
maximization. Label propagation is another well known technique 
used for community detection, which finds communities by iter-
atively spreading labels across the network. Raghavan et al. [6]
proposed an algorithm, where each node picks the label in its 
1-neighborhood that has the maximum frequency. These labels 
are permitted to spread synchronously and asynchronously across 
the network until near stability is attained in the network. This 
method has some limitations, where large communities dominate 
the smaller ones in the network, this phenomenon is called ‘epi-
demic spread’. This limitation is tackled in [18]. Liu et al. [19] used 
affinity propagation, which is a similar approach to label propaga-
tion, for finding communities/clusters in images. Some community 
detection algorithms use random walks as a tool. The idea is that, 
due to the higher density of internal edges, the probability of a 
random walk staying inside the community is greater than going 
outside. This approach is used in Walktrap [20] and Infomap [21]
algorithms. A thorough review on community detection algorithms 
for networks is given in [3]. A study presenting evolution and 
management of interest-based communities formed by humans is 
shown in [22]. Another interesting application of community de-
tection is shown in [23], where due to the emergence of smart 
grids which enable bidirectional energy, finding economically mo-
tivated Prosumers-Community Groups (PCG) is important.

Parallel Community Detection: Community detection algo-
rithms is a well studied research area, but achieving strong scal-
ability along with detecting high quality communities is an open 
problem. Most of the past research on community detection has 
focused on single threaded algorithms. There is a rich and vast 
literature of such algorithms and the ones based on modularity 
maximization being the most prominent amongst them [11]. The 
Louvain method which is based on modularity maximization [4] is 
the most widely used community detection algorithm which can 
scale to networks with millions of vertices. However, the quality of 
results obtained deteriorates as the size of the network increases 
[24]. It is observed that modularity maximization based algorithms 
are unable to detect small and well-defined communities in large 
networks [25] [26]. One of the recent parallel algorithms devel-
oped to detect disjoint community structures based on maximizing 
weighted network partitioning is given in [20]. A scalable commu-
nity detection algorithm, which partitions the network by max-
imizing the Weighted Community Clustering (WCC), is proposed 
in [27] which uses community detection metric based on triangle 
analysis [28]. Some other works which focused on developing par-
allel implementation for existing community detection heuristics is 
given in [29]. Recently, [30] proposed a scalable parallel algorithm 
for community detection, based on label propagation, which is op-
timized for GPGPU architectures. This algorithm just works on local 
information which drives the high scalability of this algorithm.



Download English Version:

https://daneshyari.com/en/article/6868383

Download Persian Version:

https://daneshyari.com/article/6868383

Daneshyari.com

https://daneshyari.com/en/article/6868383
https://daneshyari.com/article/6868383
https://daneshyari.com

