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In this paper, we study the linear separability problem for stochastic geometric objects 
under the well-known unipoint and multipoint uncertainty models. Let S = S R ∪ S B be 
a given set of stochastic bichromatic points, and define n = min{|S R |, |S B |} and N =
max{|S R |, |S B |}. We show that the separable-probability (SP) of S can be computed in 
O (nNd−1) time for d ≥ 3 and O (min{nN log N, N2}) time for d = 2, while the expected 
separation-margin (ESM) of S can be computed in O (nNd) time for d ≥ 2. In addition, we 
give an �(nNd−1) witness-based lower bound for computing SP, which implies the optimality 
of our algorithm among all those in this category. Also, a hardness result for computing 
ESM is given to show the difficulty of further improving our algorithm. As an extension, 
we generalize the same problems from points to general geometric objects, i.e., polytopes 
and/or balls, and extend our algorithms to solve the generalized SP and ESM problems 
in O (nNd) and O (nNd+1) time, respectively. Finally, we present some applications of our 
algorithms to stochastic convex hull-related problems.

© 2018 Published by Elsevier B.V.

1. Introduction

Linear separability describes the property that a set of d-dimensional bichromatic (red and blue) points can be separated 
by a hyperplane such that all the red points lie on one side of the hyperplane and all the blue points lie on the other 
side. This problem has been well studied for years in computational geometry, and is widely used in machine learning and 
data mining for data classification. However, existing linear-separation algorithms require that all the input points must 
have fixed locations, which is rarely true in reality due to imprecise sampling from GPS, robotics sensors, or some other 
probabilistic systems. It is therefore essential to study the conventional linear separability problem under uncertainty.

In this paper, we study the linear separability problem under two different uncertainty models, i.e., the unipoint and 
multipoint models [1]. In the former, each stochastic data point has a fixed and known location, and has a positive probability 
to exist at that location; whereas in the latter, each stochastic data point occurs in one of discretely-many possible locations 
with a known probability, and the existence probabilities of each point sum up to at most 1 (to allow for its absence). Our 
focus is to compute the separable-probability (SP) and the expected separation-margin (ESM) for a given set of bichromatic 
stochastic points (or general geometric objects) in Rd for d ≥ 2, where the former is the probability that the existent points 
(or objects) are linearly separable, and the latter is the expectation of the separation-margin of the existent points (or 
objects). (See Section 3.1 for a detailed and formal definition of the latter.)
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The brute-force approach of enumerating all possible instances takes exponential runtime. Therefore, in this paper, we 
propose novel algorithms that carefully compute SP and ESM in a much more efficient way. Furthermore, we show that our 
approach is highly extensible and can solve many other related problems defined on other types of objects or on multiple 
colors. To summarize, our main contributions are:

(1) We propose an O (nNd−1)-time algorithm, which uses linear space, for solving the SP problem when given a set of 
bichromatic stochastic points in Rd , d ≥ 3. (The runtime is O (min{N2, nN log N}) for d = 2.) We also show an �(nNd−1)

lower bound for all witness-based algorithms, which implies the optimality of our algorithm among all witness-based 
methods for d ≥ 3. (See Section 2.)

(2) We show that the ESM of the above dataset can be computed in O (nNd) time for d ≥ 2, using linear space. A hardness 
result is also given to show the total number of distinct possible separation-margins is �(nNd), which implies that it 
may be difficult to achieve a better runtime. (See Section 3.)

(3) We extend our algorithms to compute the SP and the ESM for datasets containing general stochastic geometric objects, 
such as polytopes and/or balls. Our generalized algorithms solve the former problem in O (nNd) time, and the latter in 
O (nNd+1) time, using linear space. (See Section 4.)

(4) We provide some applications of our algorithms to problems related to the stochastic convex hull (SCH). Specifically, by 
taking advantage of our SP algorithm, we give a method to compute the SCH membership probability, which matches 
the best known bound but is more direct. Also, we consider some generalized versions of this problem and show how 
to apply our separability algorithms to solve them efficiently. (See Section 5.)

1.1. Related work

The study of computational geometry problems under uncertainty is a relatively new topic, and has attracted a lot of 
attention; see [2] and [3] for two surveys. Different uncertainty models and related problems have been investigated in 
recent years. See [4–11] for example. The unipoint/multipoint uncertainty model, which we use in this paper, was first 
defined in [1,12], and has been applied in many recent papers. For instance, in [13], Kamousi et al. studied the stochastic 
minimum spanning tree problem, and computed its expected length. Suri et al. investigated the most likely convex hull 
problem over uncertain data in [12]; the convex hull was revisited by Agarwal et al. in [1], who showed how to compute 
the probability that a query point is inside the uncertain hull. In [14], Suri and Verbeek studied the most likely Voronoi 
Diagram (LVD) in R1 under the unipoint model, and the expected complexity of LVD was further improved by Li et al. in 
[15], who explored the stochastic line arrangement problem in R2. In [16], Agrawal et al. proposed efficient algorithms for 
the most likely skyline problem in R2 and gave NP-hardness results in higher dimensions. See [17–22] for more results 
under these uncertainty models.

Recently, in [7], de Berg et al. studied the separability problem given a set of bichromatic imprecise points in R2 in a 
setting that each point is drawn from an imprecision region.

Very recently, in [23], one of our proposed problems, the SP computing problem, was independently and simultaneously 
studied by Fink et al. under the same uncertainty model, and the same bounds were obtained, i.e., an O (nNd−1))-time and 
O (N)-space algorithm was proposed to solve the problem in Rd . However, in terms of techniques, Fink et al.’s method is 
very different from ours. Their computation of SP relies on an additional dummy anchor point and, based on this point, 
the probability is computed in an inclusion-exclusion manner. On the other hand, our method solves the problem more 
directly: it does not introduce any additional points and the SP is computed using a simple addition principle. Furthermore, 
our algorithm can be easily extended to solve many generalized problems (e.g., multiple colors, general geometric objects, 
etc.). Therefore, our solution for the SP computing problem is also of interest.

1.2. Basic notations and preliminaries

Throughout this paper, the basic notations we use are the following. We use S = S R ∪ S B to denote the given stochastic 
bichromatic dataset, where S R (resp. S B ) is a set of red (resp. blue) stochastic points (or general geometric objects in 
Section 4). The notations n and N are used to denote the sizes of the smaller and larger classes of S respectively, i.e., 
n = min{|S R |, |S B |} and N = max{|S R |, |S B |}, and d is used to denote the dimension. In this paper we always assume that d
is a constant. When we need to denote a normal bichromatic dataset (without considering the existence probabilities), we 
usually use the notation T = T R ∪ T B . The coordinates of a point x ∈ R

d are denoted as x(1), x(2), . . . , x(d) . If T is a dataset 
in Rd and U is some linear subspace of Rd , we use T U to denote a new dataset in the space U , which is obtained by 
orthogonally projecting T from Rd onto U .

We say a set of bichromatic points is strongly separable iff there exists a hyperplane, h, so that all the red points strictly 
lie on one side of h while all the blue points strictly lie on the other side. Also, we can define the concept of weakly separable
similarly, except that we allow points to lie on the hyperplane. A hyperplane that strongly (resp., weakly) separates a set of 
bichromatic points is called a strong (resp., weak) separator. The following is a fundamental and well-known result which 
we will use in various places of this paper.
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