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The chromatic art gallery problem asks for the minimum number of “colors” t so that a 
collection of point guards, each assigned one of the t colors, can see the entire polygon 
subject to some conditions on the colors visible to each point. In this paper, we explore 
this problem for orthogonal polygons using orthogonal visibility—two points p and q are 
mutually visible if the smallest axis-aligned rectangle containing them lies within the 
polygon. Our main result establishes that for a conflict-free guarding of an orthogonal 
n-gon, in which at least one of the colors seen by every point is unique, the number 
of colors is in the worst case �(log logn). By contrast, the best known upper bound 
for orthogonal polygons under standard (non-orthogonal) visibility is O (log n) colors. We 
also show that the number of colors needed for strong guarding of simple orthogonal 
polygons, where all the colors visible to a point are unique, is, again in the worst case, 
�(log n). Finally, our techniques also help us establish the first non-trivial lower bound of 
�(log logn/ log log log n) for conflict-free guarding under standard visibility. To this end we 
introduce and utilize a novel discrete combinatorial structure called multicolor tableau.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The classic Art Gallery Problem (AGP) posed by Klee in 1973 asks for the minimum number of guards sufficient to 
watch any art gallery modeled by an n-sided simple polygon P . A guard sees a point in P if the connecting line segment 
is contained in P . Therefore, a guard watches a star polygon contained in P and the question is to cover P by a collection 
of stars with smallest possible cardinality. The answer is � n

3 � as shown by Chvátal [4]. This result was the starting point for 
a rich body of research about algorithms, complexity and combinatorial aspects for many variants of the original question. 
Surveys including historical aspects can be found in the seminal monograph by O’Rourke [11], in Shermer [13], and Urrutia 
[16].

Graph coloring arguments have been frequently used for proving worst case combinatorial bounds for art gallery type 
questions starting with Fisk’s proof [6]. Somehow surprisingly, chromatic versions of the AGP have been proposed and 
studied only recently. There are two chromatic variants: strong chromatic guarding and conflict-free guarding of a polygon P . 
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Fig. 1. Example of conflict-free (left) and strong chromatic (right) r-guarding.

In both versions we look for a guard set G and give each guard one of t colors. The chromatic guarding is said to be strong if 
for each point p ∈ P all guards G(p) that see p have pairwise different colors [5]. It is conflict-free if in each G(p) there is at 
least one guard with a unique color, see [1]. The goal is to determine guard sets such that the number of colors sufficient for 
these purposes is minimal. Observe, in both versions minimizing the number of guards is not part of the objective function. 
Fig. 1 shows a simple orthogonal polygon with both conflict-free and strong chromatic guardings in the orthogonal visibility 
model. To grasp the nature of the problem, observe that it has two conflicting aspects. We have to guard the polygon but 
at the same time we want the guards to hide from each other, since then we can give them the same color. Moreover, we 
will see a strong dependence of the results on the underlying visibility model, standard vs. orthogonal visibility. We refer to 
standard and orthogonal visibility as l-visibility (line visibility) and r-visibility, respectively. We use superscripts l and r in 
the bounds to indicate the model.

Let χ l
st(n) and χ l

c f (n) denote the minimal number of colors sufficient for any simple polygon on n vertices in the strong 
chromatic and in the conflict-free version if based on line visibility.

Here is a short summary of known bounds. For simple orthogonal polygons on n vertices χ l
c f (n) ∈ O (log n), as shown 

in [1]. The same bound applies to simple general polygons, see [2]. Both proofs are based on subdividing the polygon into 
weak visibility subpolygons that are in a certain sense independent with respect to conflict-free chromatic guarding. For the 
strong chromatic version we have χ l

st(n) ∈ �(n) for simple polygons and χ l
st(n) ∈ �(

√
n) even for the monotone orthogonal 

case, see [5]. NP-hardness is discussed in [7]. In [5], simple O (1) upper bounds are shown for special polygon classes like 
spiral polygons and orthogonal staircase polygons combined with line visibility.

Next we state our main contributions for simple orthogonal polygons:

1. For the strong chromatic version we show χ r
st(n) ∈ �(log n).

2. For the conflict-free chromatic version we show χ r
c f (n) ∈ �(log log n).

3. For line visibility guards we have: χ l
c f (n) ∈ �(log log n/ log log log n).

This is the first super-constant lower bound also for general simple polygons.

The chromatic AGP versions can be easily interpreted as coloring questions for concrete geometric hypergraphs. 
Smorodinsky ([15]) gives a nice survey of both practical and theoretical aspects of hypergraph coloring. A special role 
play hypergraphs that arise in geometry. For example, given a set of points P in the plane and a set of regions R (e.g. rect-
angles, disks), we can define the hypergraph HR(P ) = (P , {P ∩ S|S ∈R}). The discrete interval hypergraph HI is a concrete 
example of such a hypergraph: We take n points on a line and all possible intervals as regions. It is not difficult to see that 
χcf (HI) ∈ �(log n). As to our AGP versions, we can associate with a given polygon and a guard set a geometric hypergraph. 
Its vertices are the guards and a hyperedge is defined by a set of guards for which there exists a point that can see exactly 
these guards. Then one wants to color this hypergraph in a conflict-free or in a strong manner. Another example is the fol-
lowing rectangle hypergraph. The vertex set is a set of n axis-aligned rectangles and each maximal subset of rectangles with 
a common intersection forms a hyperedge. Here the order for the conflict-free chromatic number is �(log n) and O (log2 n)

as shown in [12,15].
Looking at our results, it is not a big surprise that the combination of orthogonal polygons with r-visibility yields the 

strongest results. This is simply due to additional structural properties and this phenomenon has already been observed 
for the original AGP. For example, the � n

4 � tight worst case bound for covering simple orthogonal polygons with general 
stars can also be proven for r-stars (see [11]) and it holds even for orthogonal polygons with holes, see [8]. Further, while 
minimizing the number of guards is NP-hard both for simple general and orthogonal polygons if based on line visibility, it 
becomes polynomially solvable for r-visibility in the simple orthogonal case, see [10,17]. The latter result is based on the 
solution of the strong perfect graph conjecture.

The paper is organized as follows. We give necessary basic definitions in the next section. Then we prove upper bounds 
in Section 3 using techniques developed in [1,2]. That means we also subdivide a simple orthogonal polygon into histograms 
which are independent with respect to chromatic guarding. To deal with a single histogram we introduce the notion of its 
spine tree. The spine tree provides an elegant and efficient way to describe r-visibility properties of the histogram. Our 
main contributions are the lower bound proofs in Section 4. Especially, we introduce a novel combinatorial structure called 
multicolor tableau. This structure enables us to show a first super-constant lower bound for chromatic conflict-free guarding 
based on the line visibility model.
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