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Let S be a planar n-point set. A triangulation for S is a maximal plane straight-line graph 
with vertex set S . The Voronoi diagram for S is the subdivision of the plane into cells such 
that all points in a cell have the same nearest neighbor in S . Classically, both structures 
can be computed in O (n log n) time and O (n) space. We study the situation when the 
available workspace is limited: given a parameter s ∈ {1, . . . , n}, an s-workspace algorithm 
has read-only access to an input array with the points from S in arbitrary order, and it may 
use only O (s) additional words of �(logn) bits for reading and writing intermediate data. 
The output should then be written to a write-only structure. We describe a deterministic 
s-workspace algorithm for computing an arbitrary triangulation of S in time O (n2/s +
n log n log s) and a randomized s-workspace algorithm for finding the Voronoi diagram of S
in expected time O ((n2/s) log s + n log s log∗ s).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Since the early days of computer science, a major concern has been to cope with strong memory constraints. This started 
in the ’70s [22] when memory was expensive. Nowadays, a major motivation comes from a proliferation of small embedded 
devices where large memory is neither feasible nor desirable (e.g., due to constraints on budget, power, size, or simply to 
make the device less attractive to thieves).

Even when memory size is not an issue, we might want to limit the number of write operations: one can read flash 
memory quickly, but writing (or even reordering) data is slow and may reduce the lifetime of the storage system; write-
access to removable memory may be limited for technical or security reasons (e.g., when using read-only media such as 
DVDs or to prevent leaking information about the algorithm). Similar problems occur when concurrent algorithms access 
data simultaneously. A natural way to address this is to consider algorithms that do not modify the input.

The exact setting may vary, but there is a common theme: the input resides in read-only memory, the output must be 
written to a write-only structure, and we can use O (s) additional variables to find the solution (for a parameter s). The 
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goal is to design algorithms whose running time decreases as s grows, giving a time–space trade-off [23]. One of the first 
problems considered in this model is sorting [19,20]. Here, the time–space product is known to be �(n2) [8], and matching 
upper bounds for the case b ∈ �(log n) ∩ O (n/ log n) were obtained by Pagter and Rauhe [21] (b denotes the available 
workspace in bits).

Our current notion of memory constrained algorithms was introduced to computational geometry by Asano et al. [4], who 
showed how to compute many classic geometric structures with O (1) workspace (related models were studied before [9]). 
Later, time–space trade-offs were given for problems on simple polygons, e.g., shortest paths [1], visibility [6], or the convex 
hull of the vertices [5].

We consider a model in which the set S of n points is in an array such that random access to each input point is possible, 
but we may not change or even reorder the input. Additionally, we have O (s) variables (for a parameter s ∈ {1, . . . , n}). We 
assume that each variable or pointer contains a data word of �(log n) bits. Other than this, the model allows the usual 
word RAM operations. In this setting we study two problems: computing an arbitrary triangulation for S and computing 
the Voronoi diagram VD(S) for S . Since the output cannot be stored explicitly, the goal is to report the edges of the 
triangulation or the vertices of VD(S) successively, in no particular order. Dually, the latter goal may be phrased in terms of 
Delaunay triangulations. We focus on Voronoi diagrams, as they lead to a more natural presentation.

Both problems can be solved in O (n2) time with O (1) workspace [4] or in O (n log n) time with O (n) workspace [7]. 
However, to the best of our knowledge, no trade-offs were known before. Our triangulation algorithm achieves a running 
time of O (n2/s + n log n log s) using O (s) variables. A key ingredient is the recent time–space trade-off by Asano and Kirk-
patrick for triangulating a special type of simple polygons [3]. This also lets us obtain significantly better running times for 
the case that the input is sorted in x-order; see Section 2. For Voronoi diagrams, we use random sampling to find the result 
in expected time O ((n2 log s)/s + n log s log∗ s)); see Section 3. Together with recent work of Har-Peled [16], this appears to 
be one of the first uses of random sampling to obtain space–time trade-offs for geometric algorithms. The sorting lower 
bounds also apply to triangulations and Voronoi diagrams (since we can reduce the former to the latter). This implies that 
our second algorithm is almost optimal.

2. A time–space trade-off for general triangulations

In this section we describe an algorithm that outputs the edges of a triangulation for a given point set S in arbitrary 
order. For ease in the presentation we first assume that S is presented in sorted order. In this case, a time–space trade-off 
follows quite readily from known results. We then show how to generalize this for arbitrary inputs, which requires a careful 
adaptation of the existing data structures.

2.1. Sorted input

Suppose the input points S = {q1, . . . , qn} are stored in increasing order of x-coordinate and that all x-coordinates are 
distinct, i.e., xi < xi+1 for 1 ≤ i < n, where xi denotes the x-coordinate of qi .

A crucial ingredient in our algorithm is a recent result by Asano and Kirkpatrick for triangulating monotone mountains2

(or mountains for short). A mountain is a simple polygon with vertex sequence v1, v2, . . . , vk such that the x-coordinates of 
the vertices increase monotonically. The edge v1 vk is called the base. Mountains can be triangulated very efficiently with 
bounded workspace.

Theorem 2.1 (Lemma 3 in [3], rephrased). Let H be a mountain with n vertices, stored in sorted x-order in read-only memory. Let 
s ∈ {2, . . . , n}. We can report the edges of a triangulation of H in O (n logs n) time and using O (s) words of space.

Since S is given in x-order, the edges qiqi+1, for 1 ≤ i < n, form a monotone simple polygonal chain. Let Part(S) be the 
subdivision obtained by the union of this chain with the edges of the convex hull of S (denoted by conv(S)). A convex 
hull edge is long if the difference between its indices is at least two (i.e., the endpoints are not consecutive). The following 
lemma (illustrated in Fig. 1) lets us decompose the problem into smaller pieces.

Lemma 2.2. Any bounded face of Part(S) is a mountain whose base is a long convex hull edge. Moreover, no point of S lies in more 
than four faces of Part(S).

Proof. Any point qi ∈ S has at most four neighbors in Part(S): qi−1, qi+1, its predecessor and its successor along the convex 
hull (if qi lies on conv(S)). Thus, no point of S belongs to more than four faces of Part(S).

Next we show that every face F of Part(S) is a mountain with a long convex-hull edge as its base. The boundary of F
contains at least one long convex-hull edge e = (qi, q j) (i < j), as other edges connect only consecutive vertices. Since the 
monotone path qi, . . . , q j forms a cycle with the edge e and since the boundary of F is a simple polygon, we conclude that 

2 Also known as unimonotone polygons [15].
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