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Let S = {p1, p2, . . . , pn} be a set of pairwise disjoint geometric objects of some type in a 
2D plane and let C = {c1, c2, . . . , cn} be a set of closed objects of some type in the same 
plane with the property that each element in C covers exactly one element in S and any 
two elements in C are interior-disjoint. We call an element in S a seed and an element 
in C a cover. A cover contact graph (C C G) has a vertex for each element of C and an edge 
between two vertices whenever the corresponding cover elements touch. It is known how 
to construct, for any given point seed set, a disk or triangle cover whose contact graph 
is 1- or 2-connected but the problem of deciding whether a k-connected C C G can be 
constructed or not for k > 2 is still unsolved. A triangle cover contact graph (T C C G) is a 
cover contact graph whose cover elements are triangles. In this paper, we give algorithms 
to construct a 3-connected T C C G and a 4-connected T C C G for a given set of point seeds. 
We also show that any connected outerplanar graph has a realization as a T C C G on a 
given set of collinear point seeds. Note that, under this restriction, only trees and cycles 
are known to be realizable as C C G .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let S = {p1, p2, . . . , pn} be a set of pairwise disjoint geometric objects of some type in the plane and let C =
{c1, c2, . . . , cn} be a set of closed objects of some type in the same plane with the property that each element in C covers 
exactly one element in S and any two elements in C can intersect only on their boundaries. We call an element in S a seed
and an element in C a cover. The seeds may be points, disks or triangles and covering elements may be disks or triangles. 
The cover contact graph (CCG) consists of a set of vertices and a set of edges where each vertex corresponds to a cover and 
each edge corresponds to a connection between two covers if they touch at their boundaries. In other words, two vertices 
of a cover contact graph are adjacent if the corresponding cover elements touch at their boundaries. Note that the vertices 
of the cover contact graph are in one-to-one correspondence to both seeds and covering objects. In a cover contact graph, 
if disks are used as covers then it is called a disk cover contact graph and if triangles are used as covers then it is called 
a triangle cover contact graph (TCCG). Fig. 1(b) depicts the disk cover contact graph induced by the disk covers in Fig. 1(a), 
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Fig. 1. Illustration for C C G and T CC G; (a) a disk cover, (b) a CCG, (c) a triangle cover and (d) a TCCG.

whereas Fig. 1(d) depicts the triangle cover contact graph induced by the triangle covers in Fig. 1(c). A coin graph is a graph 
formed by a set of disks, no two of which have overlapping interiors, by making a vertex for each circle and an edge for 
each pair of circles that touches. Koebe’s theorem [7,9] states that every planar graph can be represented as a coin graph. 
There are several works [10,11,5] in the geometric-optimization community where the problem is how to cover geometric 
objects such as points by other geometric objects such as convex shapes, disks. The main goal is to minimize the radius of a 
set of k disks to cover n input points. Applications of such covering problems are found in geometric optimization problems 
such as facility location problems [10,11]. Abellanas et al. [1] worked on a “coin placement problem,” which is NP-complete. 
They tried to cover n points using n disks (each having different radius) by placing each disk in the center position at one 
of the points so that no two disks overlap. Further Abellanas et al. [2] considered another related problem. They showed 
that for a given set of points in the plane, it is also NP-complete to decide whether there are disjoint disks centered at the 
points such that the contact graph of the disks is connected.

Recently, Atienza et al. [3] introduced the concept of cover contact graphs where the seeds are not necessarily the 
center of the disks. They gave an O (n log n) time algorithm to decide whether a given set of point seeds can be covered 
with homothetic triangles or disks such that the resulting cover contact graph is 1- or 2-connected. The k-connectivity 
problem is still unsolved for k > 2. Atienza et al. [3] also considered the problem from another direction which they called 
“realization problem.” In a realization problem we are given a graph G of n vertices and a set S of n seeds and we are 
asked whether there is any covering so that the resulting cover contact graph is G . They gave some necessary conditions 
and then showed that it is NP-hard to decide whether a given graph can be realized as a disk cover contact graph if the 
correspondence between vertices and point seeds is given. They also showed that every tree and cycle have realizations as 
CC Gs on a given set of collinear point seeds. Durocher et al. [5] considered a circular cover contact graph problem defined 
by Atienza et al. [3]. They showed that when the input discs and the covering discs are all constrained to touch a line, then 
the problem of deciding whether the input set has a connected CCG is NP-hard. They also defined an approximate variation 
of the problem, where the covering discs are allowed to overlap by a small amount. They gave a polynomial-time algorithm 
such that if there exists an exact solution to the problem, then the algorithm returns an ε-approximate solution.

In this paper, we consider a set of arbitrary seeds in the plane where the seeds are points and the covers are triangles. 
First we consider the set of seeds which are in general position, i.e., no two seeds lie on a vertical line and we give an 
O (n log n) algorithm to construct a 3-connected T CC G of the set of seeds. We also give a O (n log n) algorithm to construct 
a 4-connected T CC G for a given set of six or more seeds. Addressing the realization problem, we give an algorithm that 
realizes a given outerplanar graph as a triangle cover contact graph (T CC G) for a given set of seeds on a line.

The remaining of the paper is organized as follows. Section 2 presents some definitions and preliminary results. Section 3
gives algorithms to construct a 3-connected T CC G and 4-connected T CC G . Section 4 gives an algorithm that realizes a given 
outerplanar graph as T CC G . Finally, Section 5 concludes the paper by suggesting some future works. A preliminary version 
of this paper was presented at WALCOM 2015 [6].

2. Preliminaries

In this section we present some terminologies and definitions which will be used throughout the paper. For the graph 
theoretic definitions which have not been described here, see [4,8].

A graph is planar if it can be embedded in the plane without edge crossing except at the vertices where the edges are 
incident. A plane graph is a planar graph with a fixed planar embedding. A plane graph divides the plane into connected 
regions called faces. The unbounded region is called the outer face; the other faces are called inner faces. The cycle lies on 
the outer face is called outer cycle. A plane graph G is an outerplanar graph if all vertices of G lie on the outer face.

The connectivity κ(G) of a graph G is the minimum number of vertices whose removal results in a disconnected graph 
or a single-vertex graph. We say that G is k-connected if κ(G) ≥ k. A vertex v in a connected graph G is a cut-vertex if the 
deletion of v from G results in a disconnected graph. Similarly an edge e in a connected graph G is a bridge if the deletion 
of e from G results in a disconnected graph. A 2-connected or biconnected graph does not contain any cut vertex.

A biconnected component of a connected graph G is a maximal biconnected subgraph of G . A block of a connected graph G
is either a biconnected component or a bridge of G . The graph in Fig. 2(a) has the blocks B0, B1, . . . , B8 depicted in Fig. 2(b). 
The blocks and cut vertices in G can be represented by a tree T , called the BC-tree of G . In T each block is represented by 
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