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We consider a generalization of the classical Art Gallery Problem, where instead of a light 
source, the guards, called k-transmitters, model a wireless device with a signal that can 
pass through at most k walls. We show it is NP-hard to compute a minimum cover of point 
2-transmitters, point k-transmitters, and edge 2-transmitters in a simple polygon. The point 
2-transmitter result extends to orthogonal polygons. In addition, we give necessity and 
sufficiency results for the number of edge 2-transmitters in general, monotone, orthogonal 
monotone, and orthogonal polygons.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The traditional art gallery problem (AGP) considers placing guards in an art gallery—modeled by a polygon—so that every 
point in the room can be seen by some guard. A similar question asks how to place wireless routers so that an entire room 
has a strong signal. Observation shows that often not only the distance from a modem, but also the number of walls a 
signal has to pass through, influences signal strength.

✩ Abstracts of part of this work appeared in the informal workshops FWCG [1] and EuroCG [2].
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Aichholzer et al. [3] first formalized this problem by considering k-modems (k-transmitters), devices whose wireless signal 
can pass through at most k walls. Since 2010, little progress has been made on the problem of k-transmitters, or even the 
problem of 2-transmitters, despite reaching a wide audience as the topic of a computational geometry column by Joseph 
O’Rourke [4] in the SIGACT News in 2012. Analogous to the original AGP (k = 0), two main questions can be considered:

(1) Given a polygon P , can a minimum cardinality k-transmitter cover be computed efficiently?
(2) Given a class of polygons of n vertices, what are lower and upper bounds on the number of guards needed to cover a 

polygon from this class?

For the classical AGP, the complexity question (1) was answered with NP-hardness for many variants. O’Rourke and 
Supowit [5] gave a reduction from 3SAT, for polygons with holes and guards restricted to lie on vertices. Lee and Lin [6]
gave the result for simple polygons. This result was extended to point guards (that are allowed to be located anywhere 
inside of P ) by Aggarwal (see [7]); Schuchardt and Hecker [8] gave NP-hardness proofs for rectilinear simple polygons, both 
for point and vertex guards. The complexity of the k-/2-transmitter problem had not previously been settled, and in this 
paper, we prove the minimum point 2-transmitter, the minimum point k-transmitter, and the minimum edge 2-transmitter 
problems to be NP-hard in simple polygons. The minimum point 2-transmitter result also holds for simple, orthogonal 
polygons.

Answers to (2) are often referred to as “Art Gallery theorems”, e.g. Chvátal’s tight bound of � n
3 � for simple polygons [9]. 

Fisk [10] later gave a short and simple proof for Chvátal’s result. In the case of orthogonal polygons, the bound becomes 
� n

4 �, as shown by Kahn et al. [11].
For k-transmitters, Aichholzer et al. [3] showed � n

2k � k-transmitters are always sufficient and � n
2k+4 � k-transmitters are 

sometimes necessary to cover a monotone n-gon4; for monotone orthogonal polygons they gave a tight bound of � n−2
2k+4 �

k-transmitters, for k even and k = 1. Fabila-Monroy et al. [12] improved the bounds on monotone polygons to a tight value 
of � n−2

2k+3 �. In addition, they gave tight bounds for monotone orthogonal polygons for all values of k. Other publications 
explored k-transmitter coverage of regions other than simple polygons, such as coverage of the plane in the presence of line 
or line segment obstacles [13,14]. For example, Ballinger et al. [13] established that for disjoint segments in the plane, where 
each segment has one of two slopes and the entire plane is to be covered, � 1

2 ( 5
6

log(k+1)
n + 1)� k-transmitters are always 

sufficient, and � n+1
2k+2 � k-transmitters are sometimes necessary. For polygons, Ballinger et al. concentrated on a class of spiral 

polygons, so called spirangles, and established that � n
8 � 2-transmitters are necessary and sufficient. For simple n-gons the 

authors provided a lower bound of �n/6� 2-transmitters. We improve this bound in Section 4.
For the classical AGP variants involving guards with different capabilities have been considered; for example, edge guards

monitor each point of the polygon that is visible to some point of the edge. The computational complexity of the minimum 
edge guard problem was settled by Lee and Lin [6] who proved it to be NP-hard. Bjorling-Sachs [15] showed a tight bound 
of � 3n+4

16 � edge guards for orthogonal polygons. For general polygons � 3n
10 � + 1 edge guards are always sufficient and � n

4 � are 
sometimes necessary [16], and no tighter bounds are known.

Other problems related to k-transmitter coverage have also been considered. Already in 1988, Dean et al. [17] considered 
a problem in which single edges become transparent. While for ordinary visibility the AGP equates to finding a cover 
of star-shaped polygons, Dean et al. defined pseudo-star-shaped polygons to include parts that are visible through single 
edges. The authors concentrated on testing whether a polygon is pseudo-star-shaped, that is, whether there exists one of 
these more powerful guards that completely covers the input polygon. Moreover, Mouawad and Shermer [18] considered 
the so-called Superman problem: given a polygon P and its subpolygon K , for a point x in the exterior of P , how many edges 
of P must be made intransparent or opaque so that x cannot see a point of K ?

Our Results. Our focus is on finding covers of lower power transmitters, that is, mainly 2-transmitters. This is in line 
with the work of Ballinger et al. [13] and is motivated both by practical applications and by virtue of being the natural 
extension of classical Art Gallery results, that is, results for k = 0. Abstracts of part of this work appeared in two informal 
workshops ([1,2]).

We provide NP-hardness results for several problem variants in simple polygons in Section 3. In Section 4 we provide 
observations on point 2-transmitter covers and a lower bound for the number of point 2-transmitters in general polygons. 
We give sufficiency and necessity results for edge 2-transmitters in Section 5; these results are summarized in Table 1.

2. Notations and preliminaries

In a polygon P , a point q ∈ P is 2-visible from p ∈ R
2 if the straight-line segment pq intersects P in at most two 

connected components.
For a point p ∈ P , we define the 2-visibility region of p, 2VR(p), as the set of points in P that are 2-visible from p. For a 

set S ⊆ P , 2VR(S) := ∪p∈S 2VR(p). A set C ⊆ P is a 2-transmitter cover if 2VR(C) = P .

4 The stated lower bound of �n/(2k + 2)� given in [3] is a typo, and the example only necessitates �n/(2k + 4)� 2-transmitters.
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