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Inclusion–exclusion is an effective method for computing the volume of a union of 
measurable sets. We extend it to multiple coverings, proving short inclusion–exclusion 
formulas for the subset of Rn covered by at least k balls in a finite set. We implement 
two of the formulas in dimension n = 3 and report on results obtained with our software.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The work reported in this paper is motivated by configurations of balls that model the organization of DNA inside the 
nuclei of human cells: the Spherical 1 Mega-base-pairs Chromatin Domain, or SCD model, which is supported by high resolution 
microscopic observations [1,2]. It was recently confirmed that inside the chromosome territories in eukaryotic cells, DNA is 
compartmentalized in sequences of highly interacting segments of roughly the same length [3]. Each segment consists of 
about one million base pairs which are rolled up in a shape that resembles a round ball, and the shapes are tightly arranged 
within a restricted space.

Modeling such a configuration as a packing – in which the balls are rigid and allowed to touch but not overlap – is 
too restrictive because the rolled up base pairs push against each other and deform to cover more empty space than is 
otherwise possible. Similarly, modeling the configuration as a covering – in which the balls overlap and cover space without 
gaps – is not realistic because some empty space is necessary to facilitate the expression and replication of the DNA. We 
refer to [4] for a representative text in the rich mathematical literature on packings and coverings with balls. For the reason 
mentioned before, we are motivated to consider configurations that lie between these two extremes: the balls are allowed 
to overlap and they do not necessarily cover the entire space; see also [5]. Given such a configuration, we are interested in 
quantifications. For packings and coverings, it is customary to compute the density, which is the expected number of balls 
that contain a random point. This measure can also be used for more general configurations, but there are other choices. 
To mention one, we may be interested in the set of points each covered by exactly one ball; its volume is the difference 
between the volume of the union and of the 2-fold cover of the balls. It requires the ability to measure the set of points 
covered by at least two balls, which is a special case of the question addressed in this paper.

✩ This work is partially supported by the Toposys project FP7-ICT-318493-STREP, and by ESF under the ACAT Research Network Programme.

* Corresponding author.
E-mail addresses: edels@ist.ac.at (H. Edelsbrunner), miglesias@ist.ac.at (M. Iglesias-Ham).

http://dx.doi.org/10.1016/j.comgeo.2017.06.014
0925-7721/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comgeo.2017.06.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:edels@ist.ac.at
mailto:miglesias@ist.ac.at
http://dx.doi.org/10.1016/j.comgeo.2017.06.014


JID:COMGEO AID:1494 /FLA [m3G; v1.218; Prn:7/07/2017; 11:27] P.2 (1-15)

2 H. Edelsbrunner, M. Iglesias-Ham / Computational Geometry ••• (••••) •••–•••

Fig. 1. The first few non-zero rows of the Pascal triangle on the left, and of the alternating Pascal triangle on the right.

Prior work and results. An effective method for computing the volume of a union of balls, or possibly more general 
sets, is the principle of inclusion–exclusion. It has a long history in mathematics and is attributed to Abraham de Moivre 
(1667–1754) but appeared first in writings of Daniel da Silva (1854) and of James Joseph Sylvester (1883). Given a finite 
collection of measurable sets, X , in Rn , it asserts that the volume of the union is the alternating sum of the volumes of the 
common intersections of the sets in all subcollections Q ⊆ X . The formula can be generalized to k-fold covers, which we 
define as the set Xk of points in Rn that belong to at least k of the sets:

Vol(Xk) =
∑
i≥k

(−1)i−k
(

i − 1

k − 1

) ∑
Q ∈(X

i

) Vol(
⋂

Q ); (1)

in which 
(X

i

)
denotes the collection of subsets of size i, see for example Chapter IV of Feller’s textbook on probability 

[6, p. 110]. Since we need (1) in the proofs of the short inclusion–exclusion formulas, we give our own proof using the 
Pascal triangle and its alternating form. If the measurable sets are balls, we write B for the collection, and Bk for the k-fold 
cover. Using the power distance of a point to a ball, the order-k Voronoi diagram identifies all collections Q ⊆ B of size k for 
which there are points so that the balls in Q are the k closest; see e.g. [7]. Restricting (1) to terms that correspond to cells 
of the order-k Voronoi diagram, we get a short inclusion–exclusion formula:

Vol(Bk) =
∑
σ∈Vk

(−1)codim γ (σ )Vol(
⋂

Q γ (σ )), (2)

see the Order-k Pie Theorem in Section 4 for details. Every γ is a cell of the order-k Voronoi diagram, with at least k and at 
most k +n balls in the corresponding collection Q γ ⊆ B. Relation (2) generalizes the inclusion–exclusion formula of Naiman 
and Wynn [8] from the union to more general k-fold covers. We also prove a slightly stronger version of (2) in which the 
sum ranges over the subcollection of cells that have a non-empty common intersection with the balls that define them. It 
generalizes the inclusion–exclusion formula based on alpha shapes given in [9]. To reduce the size of the terms, we use 
levels in hyperplane arrangements in Rn+1 and inclusion–exclusion formulas for general polyhedra; see [10,11], and obtain 
another short inclusion–exclusion formula for the n-dimensional volume of the k-fold cover:

Vol(Bk) =
∑

Q ∈Lk

L Q · Vol(
⋂

Q ); (3)

see the Level-k Pie Theorem in Section 5 for details. The collections Q ⊆ B correspond to affine subspaces of the arrange-
ment, with size between 1 and n + 1. For k = 1, the formulas (2) and (3) are the same. Importantly, we have a slightly 
stronger version of (3) in which all collections of balls are independent. Among other advantages, this additional property 
eliminates an otherwise necessary case analysis and thus simplifies computer implementations. As mentioned above, the 
short inclusion–exclusion formulas in (2) and (3) have applications in the study of the spatial organization of chromosomes. 
We have implemented the formulas in dimension n = 3, using software supporting exact arithmetic [12,13] and volume 
formulas for the common intersection of 3-dimensional balls [14].

Outline. Section 2 extends the principle of inclusion–exclusion from unions to k-fold covers. Section 3 provides background 
on Voronoi diagrams and hyperplane arrangements. Sections 4 and 5 prove short inclusion–exclusion formulas for k-fold 
covers with balls in Rn . Section 6 presents results of computational experiments. Section 7 concludes the paper.

2. The combinatorial formula

In this section, we explain how the inclusion–exclusion formula for the volume of a union of measurable sets can be 
extended to k-fold covers. In the context of probability theory, the same extension can be found in [6, p. 110]. We begin 
with a combinatorial result on Pascal triangles.

Recall that the Pascal triangle is a 2-dimensional organization of the binomial coefficients, and the alternating Pascal 
triangle is the same except that the coefficients are listed with alternating sign; see Fig. 1. We think of them as (infinitely 
large) matrices that can be multiplied. To talk about the product, we introduce notation for the u-th row of the Pascal 
triangle and the v-th column of the alternating Pascal triangle, Ru , Cv : Z → Z defined by
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