
JID:COMGEO AID:1487 /FLA [m3G; v1.218; Prn:7/07/2017; 11:43] P.1 (1-9)

Computational Geometry ••• (••••) •••–•••

Contents lists available at ScienceDirect

Computational Geometry: Theory and 

Applications
www.elsevier.com/locate/comgeo

Minimum rectilinear Steiner tree of n points in the unit 

square

Adrian Dumitrescu a,∗, Minghui Jiang b

a Department of Computer Science, University of Wisconsin–Milwaukee, USA
b Department of Computer Science, Utah State University, Logan, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 March 2015
Accepted 24 October 2016
Available online xxxx

Dedicated to the memory of 
Ferran Hurtado: remembering his kindness 
and graciousness

Keywords:
Minimum rectilinear Steiner tree
Integer partition
Packing
Covering

Chung and Graham conjectured (in 1981) that n points in the unit square [0, 1]2 can be 
connected by a rectilinear Steiner tree of length at most 

√
n + 1. Here we confirm this 

conjecture for small values of n, and for some new infinite sequences of values of n (but 
not for all n). As an interesting byproduct we obtain close rational approximations of 

√
n

from below, for those n.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let S be a finite set of points in the plane. A Euclidean Steiner tree (EST) for S is a planar straight line graph spanning S . 
The Euclidean Steiner tree problem asks for the shortest such graph, where the distance between two points p1 = (x1, y1)

and p2 = (x2, y2) is 
√

(x1 − x2)2 + (y1 − y2)2. The solutions take form of a tree, that includes all the points in S , called 
terminals, or sites, along with possibly some extra vertices, called Steiner points. In an optimal solution each Steiner point 
has degree 3, and any two consecutive incident edges form an 120◦ angle [10]. Obviously, a Euclidean minimum spanning 
tree (EMST) for a point set can always serve as a possibly suboptimal Euclidean Steiner tree for the same set.

The rectilinear Steiner tree problem asks for the shortest Steiner tree where the distance between two points p1 = (x1, y1)

and p2 = (x2, y2) is |x1 − x2| + |y1 − y2|. The solution can be drawn as a rectilinear Steiner tree (RST), composed solely of 
horizontal and vertical edges. The RST problem was first suggested by Hanan [11], who also proved the following structural 
result regarding optimal solutions. Let G(S) be the grid induced by the point set S by drawing a horizontal and a vertical 
line through each point of S and retaining only the finite segments between intersection points of these lines (in the 
axis-aligned bounding box of S). Then there exists a shortest RST for S which uses only segments in G(S) [11]; see also [16,
17].

The following questions were raised by Few [5] in 1955: What is the greatest length s(n) of a minimum Steiner tree, and what 
is the greatest length s�(n) of a minimum rectilinear Steiner tree, of n points in the unit square [0, 1]2?
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Few showed that the length of a minimum spanning path of any n points in the unit square is at most 
√

2n + 7/4 by 
a constructive proof: lay out about 

√
n equidistant horizontal lines, and then visit the points layer by layer, with the path 

alternating directions along the horizontal strips. An upper bound with a slightly better multiplicative constant for a path 
was derived by Karloff [13]. L. Fejes Tóth [4] had observed earlier that for n points of a regular hexagonal lattice in the unit 
square, the length of the minimum spanning path is asymptotically equal to (4/3)1/4√

n, where (4/3)1/4 = 1.0745 . . ..
By adapting the proof for minimum spanning path, Few also showed that the length of a minimum rectilinear Steiner 

tree of any n points in the unit square is at most 
√

n + 7/4, that is, s�(n) ≤ √
n + 7/4. Since s(n) ≤ s�(n), this also yields the 

bound s(n) ≤ √
n + 7/4. Chung and Graham [2] reported an improved upper bound of s(n) ≤ 0.995

√
n (they gave details for 

an improvement to 0.99995
√

n only) and a lower bound (by the same example of a regular hexagonal lattice in the unit 
square) of s(n) ≥ (3/4)1/4√n + O (1), where (3/4)1/4 = 0.9306 . . .. Note that (4/3)1/4 = (3/4)1/4 · 2/

√
3, where 2/

√
3 is the 

conjectured Steiner ratio in the plane.
In every dimension d ≥ 3, Few [5] showed that the maximum length of a shortest path through n points in the unit cube 

is �(n1−1/d), and that the maximum length of a minimum rectilinear Steiner tree of n points in the unit cube is O (n1−1/d). 
Snyder [18,19] then proved an asymptotically tight bound of �(n1−1/d) for the latter problem, extending the work of Few [5]
and Chung and Graham [2]. Among others, some pieces of early work on the geometric variants of the Steiner tree problem 
(EST or RST) are [3,6–8,12,20,21]. Both variants are known to be NP-complete [9]. More recent developments and other 
problems in geometric networks can be found in [15].

In this paper we study the rectilinear version. Chung and Graham [2] observed that s�(n) ≥ √
n + O (1) is implied by 

subsets of points from a suitable square lattice and, in particular, s�(k2) ≥ k + 1 for k ≥ 2. They also reported the upper 
bound s�(n) ≤ √

n + 1 + o(1), in particular, s�(k2) ≤ k + 1 for k ≥ 2.
Here we revisit the problem and show that the argument in [2] justifying this upper bound does not stand. Consequently, 

both the asymptotic upper bound s�(n) ≤ √
n + 1 + o(1) and the upper bound s�(k2) ≤ k + 1 for k ≥ 2 remain without 

proof. We then revise the argument and obtain an upper bound of s�(n) ≤ √
n + 5/4 + o(1) and establish that indeed, 

s�(n) = √
n + 1 for n = k2, for k ≥ 2, and so this formula holds for an infinite sequence of values of n.

The fact that the upper bound s�(n) ≤ √
n + 1 + o(1) does not follow from the argument in [2] was also noticed by 

Brenner and Vygen [1] in their elaborate study of planar networks with respect to various criteria of comparison. They also 
deduced the upper bound s�(n) ≤ √

n + 3/2 + o(1) [1, Corollary, p. 130] without, however, delving into the gaps of the 
argument in [2]. After an in-depth discussion of the matter, we give a new approach and a further reduction in the constant 
additive term in our Theorem 1.

Chung and Graham [2] also conjectured that s�(n) ≤ √
n + 1 for all n ≥ 2. Here we reduce their conjecture to a number-

theoretic conjecture regarding integer partitions that we propose. We then verify the new conjecture for small values of n, 
and for a new infinite sequence of values of n. In Section 2 we prove the following.

Theorem 1.

(i) For every n ≥ 2 we have s�(n) ≤ √
n + 5/4 + o(1).

(ii) For every n ≤ 50 we have s�(n) ≤ √
n + 1.

(iii) We also have: s�(k2) ≤ s�(k2 +1) ≤ k +1, s�(k2 +2) ≤ k +1 + (k +1)−1 , s�(k2 +k) ≤ k + 1
2 − 1

2k+1 , s�(k2 +k +1) ≤ k +1/2, 
and s�(k2 + 2k) ≤ k + 1 − 1

2k , for every k ≥ 2; so in particular, the bound s�(n) ≤ √
n + 1 also holds for such n.

We think that our proof method that establishes parts (ii) and (iii) could work for every n, but so far we have not been 
able to formulate a general argument. A combinatorial formulation and a relevant conjecture are proposed in Section 4.

2. Methods of proof

Our proofs are constructive and bear some similarities to earlier proofs. The first method of proof is geometric; it yields 
part (i) of Theorem 1. The second method of proof is purely combinatorial; it yields parts (ii) and (iii) of Theorem 1. We 
next present these two methods.

Few’s method. In Few’s proof [5] (as presented in a simpler but equivalent way by Chung and Graham [2]), the square U
is subdivided into s strips by s − 1 equally spaced horizontal segments �1, . . . , �s−1 of unit length. Including the lower and 
upper sides of U yields s + 1 horizontal unit segments �0, �1, . . . , �s−1, �s . Then each point is in some strip (if a point is on 
the horizontal segment shared by two adjacent strips, associate the point with either strip, arbitrarily). For each point in 
some strip, take a vertical segment through the point to join it with the two horizontal segments bounding the strip. Take 
also the left and right sides of U . Then the n points are connected by s + 1 horizontal and 2 vertical segments of length 1, 
and n vertical segments of length 1/s. The total length of these segments is

(s + 1) + 2 + n/s = (s + n/s) + 3. (1)

In particular, the vertical segment of length 1/s through each point in a strip is the union of two vertical segments joined 
at the point, one connecting the point to a horizontal segment with an odd index, and the other connecting the point to a 
horizontal segment with an even index. From these segments we can construct two disjoint Steiner trees for the n points:
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