Computational Geometry ••• (••••) •••-•••

FISEVIER

Contents lists available at ScienceDirect

Computational Geometry: Theory and Applications

www.elsevier.com/locate/comgeo

On the \mathcal{O}_{β} -hull of a planar point set $^{\stackrel{\star}{\sim},\stackrel{\star}{\sim}\stackrel{\star}{\sim}}$

Carlos Alegría-Galicia a, David Orden b,*,1, Carlos Seara c,2, Jorge Urrutia d,3

- ^a Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México, Mexico
- ^b Departamento de Física y Matemáticas, Universidad de Alcalá, Spain
- ^c Departament de Matemàtiques, Universitat Politècnica de Catalunya, Spain
- ^d Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico

ARTICLE INFO

Article history: Received 1 April 2015 Accepted 1 April 2017

Available online xxxx

Keywords: Restricted-orientation geometry Convex hull

Area optimization Perimeter optimization

Fitting

ABSTRACT

We study the \mathcal{O}_{β} -hull of a planar point set, a generalization of the Orthogonal Convex Hull where the coordinate axes form an angle β . Given a set P of n points in the plane, we show how to maintain the \mathcal{O}_{β} -hull of P while β runs from 0 to π in $\Theta(n \log n)$ time and O(n) space. With the same complexity, we also find the values of β that maximize the area and the perimeter of the \mathcal{O}_{β} -hull and, furthermore, we find the value of β achieving the best fitting of the point set P with a two-joint chain of alternate interior angle β .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathcal{O}_{β} be a set of two lines with slopes 0 and $\tan(\beta)$, where $0 < \beta < \pi$. A region in the plane is said to be \mathcal{O}_{β} -convex, if its intersections with all translations of any line in \mathcal{O}_{β} are either empty or connected. An \mathcal{O}_{β} -quadrant is a translation of one of the $(\mathcal{O}_{\beta}$ -convex) open regions that result from subtracting the lines in \mathcal{O}_{β} from the plane. We call the quadrants of \mathcal{O}_{β} as top-right, top left, bottom-right, and bottom-left according to their position with respect to the elements of \mathcal{O}_{β} , see Fig. 1(a). Let P be a set of n points, and \mathcal{Q} the set of all \mathcal{O}_{β} -quadrants that are P-free; i.e., that contain no elements of P. The \mathcal{O}_{β} -hull of P is the set

$$\mathcal{O}_{\beta}\mathcal{H}(P) = \mathbb{R}^2 - \bigcup_{q \in \mathcal{O}} q$$

of points in the plane belonging to all connected supersets of P which are \mathcal{O}_{β} -convex [3,11]. See Fig. 1(b).

E-mail addresses: alegria_c@uxmcc2.iimas.unam.mx (C. Alegría-Galicia), david.orden@uah.es (D. Orden), carlos.seara@upc.edu (C. Seara), urrutia@matem.unam.mx (J. Urrutia).

http://dx.doi.org/10.1016/j.comgeo.2017.06.003

0925-7721/© 2017 Elsevier B.V. All rights reserved.

^{*} In memoriam of professor Ferran Hurtado, inspirational friend and colleague, acknowledging his key contribution to the development of Computational Geometry.

[†] This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

^{*} Corresponding author.

¹ Research supported by MINECO Projects MTM2014-54207 and TIN2014-61627-EXP.

² Research supported by projects Generalitat de Catalunya DGR 2014SGR46 and MINECO MTM2015-63791-R.

³ Research supported by SEP-CONACYT 80268, PAPPIIT IN102117 Programa de Apoyo a la Investigación e Innovación Tecnológica UNAM.

Fig. 1. (a) A set \mathcal{O}_{β} -hull, the top-right, top-left, bottom right, and bottom left quadrants. (b) The corresponding \mathcal{O}_{β} -hull of a point set.

(b)

(a)

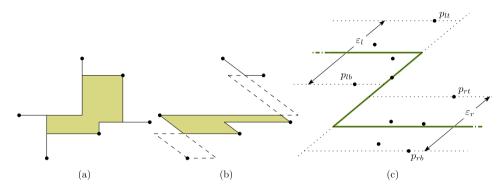


Fig. 2. (a) $\mathcal{O}_{\frac{\pi}{2}}\mathcal{H}(P)$. (b) $\mathcal{O}_{\beta_0}\mathcal{H}(P)$, where $\beta_0 > \frac{\pi}{2}$. (c) A two-joint non-orthogonal polygonal chain fitting a point set.

The concept of \mathcal{O}_{β} -convexity stemmed from the notion of *restricted orientations* [9], where geometric objects comply with a property (or a set of properties) related to some fixed set of lines. Researchers have extensively studied this notion by considering restricted-oriented polygons [9], proximity [18], visibility [17], and both restrictions and generalizations of \mathcal{O}_{β} -convexity. The particular case of *orthogonal convexity* [16] considers β to be fixed at $\frac{\pi}{2}$. In the more general \mathcal{O} -convexity [15,16], \mathcal{O}_{β} is replaced by a (possibly infinite) set of lines with arbitrary orientations. Other restricted-oriented notions of convexity include D-convexity [8] and \mathcal{O} -convexity [14]. The former is based in a functional (rather than set-theoretical) definition, while the latter (unlike \mathcal{O}_{β} -convexity) always leads to connected sets. For a comprehensive compilation of studies on the area please refer to Fink and Wood [7]. Some recent computational results can be found in [1–3, 12]

In this paper, we solve the problem of maintaining the combinatorial structure of $\mathcal{O}_{\beta}\mathcal{H}(P)$ while β goes from 0 to π , and apply this result to some optimization problems. Following the lines of Bae et al. [5], we find the values of β that maximize the area and the perimeter of $\mathcal{O}_{\beta}\mathcal{H}(P)$. In addition, we include an appendix extending the results from Díaz-Báñez et al. [6] to fit a two-joint not-necessarily orthogonal polygonal chain to a point set. See Fig. 2.

In all cases, our general approach is to perform an angular sweep. We first discretize the set $\{\beta:\beta\in(0,\pi)\}$ into a linear sequence of increasing angles $\{\beta_1,\beta_2,\ldots,\beta_{O(n)}\}$. While β runs from 0 to π , each β_i corresponds to an angle where there is a change in the combinatorial structure of $\mathcal{O}_{\beta}\mathcal{H}(P)$. We then solve the particular problem for any $\beta\in[\beta_1,\beta_2)$ in $O(n\log n)$ time, and show how to update our solution in logarithmic time in the subsequent intervals $[\beta_i,\beta_{i+1})$. All our algorithms run in $O(n\log n)$ time and O(n) space.

Outline of the paper In Section 2 we show how to maintain the \mathcal{O}_{β} -hull of P while β goes from 0 to π . In Section 3 we extend this result to solve the optimization problems we mentioned above. We end in Section 4 with our concluding remarks.

2. The \mathcal{O}_{β} -hull of P

In this section we introduce definitions that are central to our results. We also show how to compute $\mathcal{O}_{\beta}\mathcal{H}(P)$ for a fixed value of β , and how to maintain its combinatorial structure while β runs from 0 to π .

2.1. Preliminaries

For the sake of simplicity, we will assume P to have no three colinear points, and no pair of points on a horizontal line. Consider the region \mathcal{R} obtained by removing from the plane all top-right \mathcal{O}_{β} -quadrants free of elements of P. The *top-right* \mathcal{O}_{β} -staircase of P is the directed polygonal chain formed by the segment of the boundary of \mathcal{R} that starts at the rightmost and ends at the topmost vertex (element of P that lies over the boundary) of $\mathcal{O}_{\beta}\mathcal{H}(P)$, with respect to the coordinate

-

Download English Version:

https://daneshyari.com/en/article/6868513

Download Persian Version:

https://daneshyari.com/article/6868513

Daneshyari.com