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a b s t r a c t

Estimation and hypothesis tests for partial linear multiplicative models are considered in
this paper. A profile least product relative error estimationmethod is proposed to estimate
unknown parameters. We employ the smoothly clipped absolute deviation penalty to do
variable selection. AWald-type test statistic is proposed to test a hypothesis on parametric
components. The asymptotic properties of the estimators and test statistics are established.
We also suggest a score-type test statistic for checking the validity of partial linear
multiplicative models. The quadratic form of the scaled test statistic has an asymptotic
chi-squared distribution under the null hypothesis and follows a non-central chi-squared
distribution under local alternatives, converging to the null hypothesis at a parametric
convergence rate. We conduct simulation studies to demonstrate the performance of the
proposed procedure and a real data is analyzed to illustrate its practical usage.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let (X, Z, Y ) be a random vector, and assume that (X, Z) and Y satisfy the following partial linear multiplicative model
(PLMM):

Y = exp
(
βT
0X + g(Z)

)
ϵ, (1.1)

where Y is the response variable, X = (X1, . . . , Xp)T ∈ Rp, Z ∈ R1, g(·) is an unknown smooth function. Both Y and ϵ

considered in model (1.1) are positive variables. The model error ϵ satisfies E(ln(ϵ)) = 0 and also E(ϵ − ϵ−1
|X) = 0.

Model (1.1) is equivalent to ln(Y ) = βT
0X + g(Z) + ln(ϵ). To make g(·) unique, condition E(ln(ϵ)) = 0 is used to identify

g(·). The latter condition E(ϵ − ϵ−1
|X) = 0 is used for the least relative error estimation (Chen et al., 2010, 2016) of β0. β0 is

unknown and need to be estimated. In this paper, we focus on univariate Z only, although the proposed procedure is directly
applicable for multivariate Z . However, the extension might be practically less useful due to the curse of dimensionality.

Multiplicative linear regression model is studied by Chen et al. (2010, 2016) based on the fundamental assumptions
that the response variable and model error are positive and that the logarithmic transform of the response variable is
linear. These models are useful in analyzing financial and biomedical data with positive responses, such as the price of
financial assets and body fat indexes. In recent years, various efforts have been made to balance the interpretation of linear
models with the flexibility of nonparametric models, because an incorrect model of the regression function can lead to
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excessive modeling biases and erroneous conclusions. PLMM is a realistic, parsimonious candidate when one believes that
the relationship between the response variable and some of the covariates has a parametric form, while the relationship
between the response variable and the remaining covariate may not be linear. PLMM enjoys the simplicity properties of
multiplicative linear regressionmodel and the flexibility of nonparametric models because it combines both parametric and
nonparametric components.

Model (1.1) is very flexible. First of all, by taking a logarithmic transformation, model (1.1) becomes to classical partial
linear model (Härdle et al., 2000; Heckman, 1986; Speckman, 1988; Liang and Li, 2009; Liang et al., 1999; Xie and Huang,
2009; Yang et al., 2016; Müller and van de Geer, 2015; Zhu and Ng, 2003; Wang and Jing, 2003; Liang et al., 2012).
Such a logarithmic transformation is reasonable because of the theoretical and computational simplicity. Second, it is
a generalisation of multiplicative linear regression models or accelerated failure models. When g(·) ≡ 0, model (1.1)
degenerates to the multiplicative regression models (Chen et al., 2010, 2016). To estimate the parameters in multiplicative
regressionmodels, Chen et al. (2010) proposed the least absolute relative error (LARE) estimation byminimising

∑n
i=1(|ϵ

−1
i −

1| + |ϵi − 1|). As noted in Chen et al. (2016), the LARE estimation enjoys the robustness and scale-free property, however,
this criterion is unsmooth and its computation is very complicated. Besides, confidence intervals for parameters are not very
accurate due to the complexity of asymptotic covariance matrix, which involves the density of the error ϵ. As a remedy,
Chen et al. (2016) proposed the least product relative error (LPRE) criterion by minimising

∑n
i=1(|ϵ

−1
i − 1| × |ϵi − 1|),

which is equivalent to minimise
∑n

i=1(ϵ
−1
i + ϵi). Because the LPRE criteria is strictly convex and infinitely differentiable, the

optimisation procedure is much easier.
In this study, we extend the parametric multiplicative models (Chen et al., 2010, 2016) to a partial linear multiplicative

model (PLMM) (1.1) and consider estimation and hypothesis testing for this model. Firstly, we propose the profile least
product relative error (PLPRE) estimation for β0 and g(·). This is expected to be more efficient than the logarithmic
transformation method. The convexity of the LPRE criteria leads to a penalised LPRE method for variable selection based
on the recently developed smoothly clipped absolute deviation (SCAD) method (Fan and Li, 2001) to achieve variable
selection. Secondly, we consider statistical inference for β0 to test whether β0 satisfies some linear combinations or not.
A Wald-type statistic is proposed and is shown that the limiting distribution under the null hypothesis is a centered chi-
squared distribution, and consider a local alternative hypothesis. Moreover, a restricted estimator of β0 is proposed under
the null hypothesis in terms of its asymptotic properties. Finally, we aim to develop a lack-of-fit test for checking the
adequacy of PLMM. A score-type statistic is proposed and is shown to be asymptotically centered normal distributed under
null hypothesis. Once the asymptotic variance of this test statistic is estimated, a scaled statistic can be constructed in a
quadratic form based on our previous statistic. We show that this scaled statistic has an asymptotic centered chi-squared
distribution under the null hypothesis and has a non-central chi-squared distribution under local alternatives, converging
to the null hypothesis at a parametric convergence rate. Monte Carlo simulation experiments are conducted to examine the
performance of the proposed estimation and test procedure.

This paper is organised as follows. In Section 2, we propose the estimation procedure for the parameters, introduce the
algorithms, and present the asymptotic results. We also introduce a penalised estimation to achieve variable selection.
In Section 3, we derive a Wald-type test statistic for the testing problem, provide a restricted estimator under the null
hypothesis, and obtain its theoretical properties. In Section 4,we develop a score-type test statistic for checking the adequacy
of partial linearmultiplicativemodels, and study the theoretical properties of this test statistic. Section 5 presents the results
of simulation studies, and Section 6 reports the statistical analysis of real data. All proofs of theorems are given in the online
‘‘Supplementary Material’’.

2. Estimation

2.1. PLPRE for β0 and g(z)

Suppose {Xi, Zi, Yi}
n
i=1 is an i.i.d. sample from model (1.1), where Xi = (X1i, . . . , Xpi)T. The estimation procedure is

summarised as follows. We transform model (1.1) into ln(Y ) = βT
0X + g(Z) + ln(ϵ). To estimate g(·), we use the local

linear smoothing technique and approximate g(z) by g(z∗) + g ′(z∗)(z − z∗) in a neighborhood of z. For given β, the local
linear estimator of (g(z), g ′(z)) is obtained by minimising (2.1) with respect to (b0, d0),

(ĝ(z, β), ĝ ′(z, β))

= argmin
b0,d0

n∑
i=1

{
ln(Yi) − βTXi − b0 − d0(Zi − z)

}2
Kh(Zi − z), (2.1)

where Kh(Zi − z) = h−1K ((Zi − z)/h) , K (·) is a kernel function and h is a bandwidth. A direct calculation from (2.1) entails
that

ĝ(z, β) =
Tn,20(z, β)Tn,01(z, β) − Tn,10(z, β)Tn,11(z, β)

Tn,00(z, β)Tn,20(z, β) − T 2
n,10(z, β)

, (2.2)

where Tn,l1 l2 (z, β) =
∑n

i=1Kh(Zi − z)(Zi − z)l1 [ln(Yi) − βTXi]
l2 for l1 = 0, 1, 2, l2 = 0,1.
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