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a b s t r a c t

Interactions between features of high-dimensional biomedical data often exhibit complex
and organized, yet latent, network topological structures. Estimating the non-sparse large
covariance matrix of these high-dimensional biomedical data while preserving and rec-
ognizing the latent network topology are challenging. A two step procedure is proposed
that first detects latent network topological structures from the sample correlation matrix
by implementing new penalized optimization and then regularizes the covariance matrix
by leveraging the detected network topological information. The network topology guided
regularization can reduce false positive and false negative rates simultaneously because
it allows edges to borrow strengths from each other precisely. Empirical data examples
demonstrate that organized latent network topological structures widely exist in high-
dimensional biomedical data across platforms and identifying these network structures
can effectively improve estimating covariance matrix and understanding interactive rela-
tionships between biomedical features.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Recent advances in bio-technologies allowmeasuringmulti-dimensional biological features simultaneously in genomics, 2

proteomics, and neuroimaging research. The underlying biological machinery is often associatedwith coordination between 3

high-throughput features (Emilsson et al., 2008). For a large biomedical data set Xn×p with the sample size n and p variables, 4

estimating large covariance matrix Σ or correlation matrix R is fundamental to understand the interactive relationships 5

between the biomedical features (Fan et al., 2015). 6

Regularization methods have been developed to estimate the high-dimensional covariance/correlation and precision 7

matrix. For instance, the ℓ1 norm penalized maximum likelihood has been utilized to estimate the sparse precision matrix 8

Θ = Σ−1 (Friedman et al., 2008; Banerjee et al., 2008; Yuan and Lin, 2007; Lam and Fan, 2009; Yuan, 2010; Cai and 9

Liu, 2011; Shen et al., 2012) and the covariance matrix thresholding methods to directly regularize the sample covariance 10

matrix (Bickel and Levina, 2008; Rothman et al., 2009; Cai et al., 2011; Zhang, 2010; Fan et al., 2013; Liu et al., 2014). The 11

thresholding regularization techniques have also been applied to correlation matrix R estimation (Qi and Sun, 2006; Liu et 12

al., 2014; Cui et al., 2016). We consider the estimation of standard deviations and correlation matrix are independent, and 13
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(a) The truth: two networks. (b) Shuffling the order of nodes.

(c) The input data for NICE. (d) Network detection results.

Fig. 1. An example of a network induced correlation matrix: |V | = 100 nodes and |E| = 4950 edges, there are two networks (a) and in practice they are
implicit (b); it may be difficult to recognize the latent G1

∪ G0 mixture structure when looking at the sample correlation matrix (c); the proposed objective
function is robust to false positive noise and identify the latent G1

∪ G0 mixture structure from the sample correlation matrix.

thus regularizing the large correlation and covariance matrix are exchangeable by Σ̂ = diag(S)−1/2R̂diag(S)−1/2, where S is1

the sample covariance matrix (Barnard et al., 2000; Khondker et al., 2013; Fan et al., 2015). Graph notations and definitions2

are used to describe the relationship between the p variables of Xn×p (Yuan and Lin, 2007; Mazumder and Hastie, 2012).3

A finite undirected graph G = {V , E} consists two sets, where the node set V represents variables X = (X1, . . . , Xp) with4

|V | = p and the edge set E denotes relationships between the nodes. Let ei,j be the edge between nodes i and j. Then ei,j is5

an connected edge if nodes i and j are dependent with each other in G. Under the sparsity assumption, the regularization6

algorithms assign most edges as unconnected, and G can be decomposed to a set of maximal connected subgraphs (Witten7

et al., 2011; Mazumder and Hastie, 2012).8

Motivation: estimating large no-sparse covariance matrix with latent network topology.9

A key assumption for most aforementioned large covariance/precision estimation methods is the sparsity property that10

only a small proportion of edges are connected (variables are dependent), yet this assumption is not directly applicable11

in many biomedical applications (Fan et al., 2015). When analyzing high-dimensional omics data sets, we note that the12

interactions between biological features often interestingly exhibit non-sparse and organized network/graph topological13

patterns. The direct application of the regularizationmethods for large covariance/precisionmatrix estimation (with sparsity14

assumption) may miss interactions between features with network topology. Recently, the factor based large covariance15

matrix estimation methods have been developed to account for the common factors of the dependence structure between16

features (Fan et al., 2013, 2015, 2016). However, these methods may not explicitly provide inferences on the interactive17

relationships that reveal and reflect underlying network topological structures. Therefore, we propose a new statistical18

procedure that discovers the latent network topological structures and regularizes the covariance/correlation matrix with19

the guidance of the detected networks.20

Network topological structure and detection:we frequently observe a specific G1
∪G0 mixture structure (though it is latent)21

in omics and imaging data sets (see Fig. 1 and the two examples in Section 3). This topological structure denotes G as a22

mixture of two components G = G1
∪ G0 where the first component G1

= ∪
C1
c=1G

1
c is a stochastic block model structure and23

the second component G0
= ∪

C0
c=1G

0
c (G0

c is a singleton) can be considered as an Erdös–Rényi random graph. We refer it as24

the G1
∪ G0 mixture structure. The G1

∪ G0 mixture structure is a special case of the stochastic block model, which contains25
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