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a b s t r a c t

Statistical regression models whose mean functions are represented by ordinary differen-
tial equations (ODEs) can be used to describe phenomena which are dynamical in nature,
and which are abundant in areas such as biology, climatology and genetics. The estimation
of parameters of ODE based models is essential for understanding its dynamics, but the
lack of an analytical solution of the ODE makes estimating its parameter challenging. The
aim of this paper is to propose a general and fast framework of statistical inference for
ODE based models by relaxation of the underlying ODE system. Relaxation is achieved
by a properly chosen numerical procedure, such as the Runge–Kutta, and by introducing
additive Gaussian noises with small variances. Consequently, filtering methods can be
applied to obtain the posterior distribution of the parameters in the Bayesian framework.
The main advantage of the proposed method is computational speed. In a simulation
study, the proposed method was at least 35 times faster than the other Bayesian methods
investigated. Theoretical results which guarantee the convergence of the posterior of the
approximated dynamical system to the posterior of true model are presented. Explicit
expressions are given that relate the order and themesh size of the Runge–Kutta procedure
to the rate of convergence of the approximated posterior as a function of sample size.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many dynamical phenomena in the real world can be represented mathematically by ordinary differential equations
(ODEs). Common examples include the ODE for Newton’s law of cooling, Lotka–Volterra equations for predator–prey
populations (Alligood et al., 1997) and the Lorenz equations for atmospheric convection (Lorenz, 1963). There are many
other popular examples describing physical, chemical and biological phenomena using ODEs. Although observing data from
an ODE systems is common, estimating the parameters of ODEmodels (ODEMs) can be challenging because of the lack of an
analytical solution to the ODE. Here, we give a brief review of previous works on ODEMs.

There are several frequentist methods in the literature for parameter estimation of ODEMs. Bard (1974) used numerical
integration to approximate the solution of ODEs and minimized the objective function based on a gradient method. Varah
(1982) suggested a two step estimation method using cubic spline approximation. The two steps consist of estimating the
regression function followedby estimating the parameters of theODEM. Ramsay and Silverman (2005)modified the first step
of Varah (1982) by adding a roughness penalty function which measures the difference between the ODE and the derivative
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of the estimated mean function. Wu et al. (2012) adopted only the first step of Ramsay and Silverman (2005) and modified
the second step of Varah (1982) by adopting numerical integration to approximate the derivative of the state variables.
The parameter cascading method was proposed by Ramsay et al. (2007). They grouped the parameters into the regression
coefficients, structural parameters, and regularization parameters. The parameters in each group are estimated in turn in a
cascading fashion.

Bayesian inference of ODEMs is more challenging because naive application of Markov Chain Monte Carlo (MCMC)
methods would require calculation of the numerical solution of ODE whenever parameters are sampled from the proposal
distribution. Gelman et al. (1996) and Huang et al. (2006) proposed a Bayesian computationmethod for parameter inference
of pharmacokinetic models and the longitudinal HIV dynamic system, respectively. Campbell (2007) combined the parallel
tempering (Geyer, 1991) and collocationmethod (Ramsay et al., 2007) to get over the rough surface of the posterior, but this
slows down the speed of computations significantly. Arnold et al. (2013) used particle filter framework for the inference of
ODEMs with linear multistep methods for the numerical integration. Dass et al. (2017) suggested a Bayesian inference with
Laplace approximation for fast computation when the dimension of the parameter space is moderate.

In this paper, we propose a Bayesian inferencemethod for ODEMs using a relaxation technique via dynamical systems and
associated dynamicmodels. Relaxation is achieved by a properly chosen numerical procedure, such as the Runge–Kutta, and
by introducing additive Gaussian noise variables with variance tending to zero. The variance of the additive noise variables
works as a measure of fidelity to the original ODEM and by letting it tend to zero, we recover the original model. The
relaxation introduces inefficiency in the inference, but we gain the speed of the computation in return.

For fast computation, a filtering method is applied for inferring posterior distributions of parameters in a Bayesian
framework. The relaxation technique provides a dynamical system and model for which a fast inference tool based on
sequential Monte Carlo can be developed. With these sequential methods, we do not need to calculate the whole path of
the numerical solution for each realization of the new parameter. It reduces the computation time significantly compared to
other standard Bayesian procedures and enables us to deal with the ODEM in reasonable computing time. In Section 5.2, to
emphasize its fast computation, the proposed method is compared with other methods: the parameter cascading method,
the delayed rejection adaptive Metropolis algorithm and the Bayesian inferential procedure with Laplace approximation. In
our simulation studies, the proposed method is approximately 9 to 46 times faster than the other methods considered.

We also derive convergence results for the approximated posteriors under suitable regularity conditions. We present a
guideline for the choice of model parameters which gives a reasonable relative error rate, and provide its theoretical basis.
Theoretical results which guarantee the convergence of the posterior of the approximated dynamical system to the posterior
of true model are presented. Explicit expressions are given that relate the order and the mesh size of the Runge–Kutta
procedure and guarantee the rate of convergence of the approximated posterior to the true posterior.

The rest of the paper is organized as follows. In Section 2, we describe a differential equationmodel and its corresponding
relaxeddynamicmodel counterpart aswell as prior choices. Themethodof posterior inference is described in Section 3. Some
theoretical support for the proposed method is given in Section 4. In Section 5, we give three simulated data examples to
demonstrate the speed and performance of the proposed method. A real data set, the Lynx–Hare data set, is analyzed in
Section 6. The discussion is given in Section 7. The proofs of theorems are given in Appendix A.

2. Ordinary differential equation models and nonlinear dynamic models

2.1. Ordinary differential equation models

The ODEM is the regression model with regression function x(t) described by an ODE. The regression function x(t) is the
solution of the differential equation

ẋ(t) = f (x(t), v, t; θ ), (1)

where f is a p-dimensional smooth function, v(t) is a deterministic input function, θ ∈ Θ ⊂ Rq is the unknown parameter,
and ẋ(t) denotes the first derivative of x(t) with respect to time t . Since the input function v(t) does not affect the general
ideas of inference in this paper, it is not considered subsequently. The data are observed at n points in the time interval
t ∈ [0, T ] ⊂ R, given by 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T . Thus,

yi = x(ti) + ϵi, i = 1, . . . , n,

where yi is a p-dimensional observation vector at time ti, the error ϵi is drawn independently from the multivariate normal
distribution Np(0, σ 2Ip) with unknown σ 2 > 0, and x(ti) is the underlying regression function measured at time ti.

The regression model is given by

yi = xi + ϵi, i = 1, . . . , n,

ẋ(t) = f (x(t), t; θ )
(2)

where xi = x(ti). The covariate xi is determined by the initial value of x, x0 = x(0), and the parameter θ . In the rest of the
paper, we call model (2) as the regression model or the true model.
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