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h i g h l i g h t s

• Overfitting and underfitting (convergence to local maxima) are illustrated using the EM algorithm for model-based clustering.
• A nonparametric bootstrap augmented EM-style algorithm is proposed and contrasted with other approaches.
• It is shown in both simulations and real applications to simultaneously address both overfitting and underfitting.
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a b s t r a c t

The expectation–maximization (EM) algorithm is a common approach for parameter
estimation in the context of cluster analysis using finite mixture models. This approach
suffers from thewell-known issue of convergence to localmaxima, but also the less obvious
problem of overfitting. These combined, and competing, concerns are illustrated through
simulation and then addressed by introducing an algorithm that augments the traditional
EM with the nonparametric bootstrap. Further simulations and applications to real data
lend support for the usage of this bootstrap augmented EM-style algorithm to avoid both
overfitting and local maxima.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Finitemixturemodels (cf.McLachlan and Peel, 2004) are often used as an attractive approach to cluster analysis, providing 2

a wholly statistical handling of the unsupervised classification problem (cf. McNicholas, 2016a). Recent advances within the 3

field of model-based clustering can be found by consulting (McNicholas, 2016b), while Bouveyron and Brunet-Saumard 4

(2014) provide overview of the state-of-the-art in a high-dimensional context. A random vector X can be said to arise from 5

a parametric finite mixture model if its probability density function is of the form f (x) =
∑G

g=1πg fg (x | Θg ) where G is the 6

number of mixture components, πg are positive mixing proportions such that
∑G

g=1πg = 1 , and fg (x | Θg ) is a parametric 7

density functionwith parameter spaceΘg . Notably, finitemixturemodels provide a probabilistic view of clustering, wherein 8

observations are assigned a probability of having arisen from each component via the conditional expectation of their 9

membership given the data and parameters. Specifically, a component indicator variable Zig is introduced such that Zig = 1 10

if observation i arises from component g and 0 otherwise — in the context of clustering, these Zig are missing data. Assuming 11

the true model f (x) is knownwith multivariate densities f1(·), . . . , fG(·) and parameter space ϑ = (π1, . . . , πG, Θ1, . . . , ΘG), 12

then for any observation vector xi, we can find 13

E[Zig | xi, ϑ] =
πg fg (xi | Θg )∑G
j=1 πjfj(xi | Θj)

. (1) 14
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Fig. 1. From left to right: (A.) Mirror image groups with a central outlier (B.) Common solution from random zig initialization (C.) Common solution from
‘good’ zig and parameter initializations.

Unfortunately, in realistic applications, nearly all elements of f (x) are unknown — specifically, the component densities1

fg (·) are generally unknown and any associated free parameters from ϑ require estimation. Often, the multivariate densities2

fg (·) are taken to be from the same parametric family, with the multivariate Gaussian being a common choice (cf. Banfield3

and Raftery, 1993; Celeux and Govaert, 1995; Fraley and Raftery, 2002; McNicholas and Murphy, 2008). Herein, we will4

focus on the unconstrained Gaussian model, where the parameter space is ϑ = (π1, . . . , πG, µ1, . . . ,µG,Σ1, . . . ,ΣG) with5

µg defined as the mean vector for group g and Σg defined as the covariance matrix for group g — all ϑ unknown and6

requiring estimation. The most common approach for model fitting is the expectation–maximization (EM) algorithm (cf.7

Dempster et al., 1977; McLachlan and Krishnan, 2008) which suffers drawbacks such as converging to local optima and8

even local minima (Titterington et al., 1985; McLachlan and Krishnan, 2008) — the EM algorithm will be further detailed9

in Section 2.1 of this manuscript. Many have approached these issues by seeking ‘good’ initializations (Biernacki et al.,10

2003; Karlis and Xekalaki, 2003), imposing constraints on the EM (Ingrassia, 2004; Greselin and Ingrassia, 2010), exploring11

alternative estimation techniques that rely on differing optimization strategies (Martınez and Vitria, 2000; Pernkopf and12

Bouchaffra, 2005; Andrews andMcNicholas, 2013), or implementing techniques arising from the Bayesian paradigm (Robert13

and Titterington, 1998; Attias, 1999; Frühwirth-Schnatter, 2006; McGrory and Titterington, 2007).14

While achieving the global maximum likelihood parameter space for a fittedmodel is an important task to work towards,15

it is essential to recognize that achieving the global maxima while fitting a model to observed data will generally result in16

some amount of overfitting. This fact is sometimes overlooked in unsupervised scenarios, and has large ramifications in17

the context of mixture models because it calls into question the validity of the expected values calculated from Eq. (1). To18

illustrate this point, we provide a toy simulation by generating one bivariate Gaussian cluster centred at (7, 7), introducing19

a mirror image of that cluster reflected about Y = −X , and placing a point directly at the origin (see Fig. 1A). While this20

simulation iswholly unrealistic, it could be expected that a Gaussianmixturemodel should give a satisfactory fit to it. It turns21

out that two problems arise when fitting an unconstrained Gaussian mixture model with two components in this scenario.22

Firstly, if provided random initialization via cluster memberships, the solution provided in Fig. 1B is one of several stable23

local maxima that can be found due to the exact mirror image nature of the data. While randomly generated, or real, data is24

unlikely to exhibit this particular model-fitting behaviour, this still illustrates the complexity of model-fitting in the context25

of the EM algorithm. Secondly, provided a ‘good’ initialization, such as providing an initialization from another clustering26

algorithm (k-means is used for this example), a solution similar to Fig. 1C is found. While the contours look reasonable to27

the naked eye, the centre point has its expected cluster memberships calculated as28

E[Z01 | ϑ] = .9999999706 and E[Z02 | ϑ] = .0000000294.29

Keeping in mind that the data is specifically manufactured such that the centre point is exactly equidistant to two mirrored30

groups, this is a grossly high probability of membership to the first group.31

The estimated log-likelihood value for the solution from Fig. 1B is approximately −2065. For the solution in Fig. 1C,32

the log-likelihood is computed as approximately −1459. And yet, the ‘appropriate’ solution (with the caveat that we are33

restricted to using a two-group Gaussian mixture model), wherein the point at the origin is given equal probabilistic34

classification into both groups, has a computed log-likelihood of approximately −1462. This solution is, in fact, a local35

maxima, however it is a maxima that is practically impossible to find through standard initializations of the EM algorithm36

— one has to initialize the EM very close to the solution in order to converge there. And so, we have illustrated a paradox for37

this toy data — we do not actually want to find the global maxima (leads to overfitting), but we also do not want the vast38

majority of local maxima (lead to underfitting).39

In the sections that follow, we introduce and apply a model-fitting approach that combines the EM algorithm with40

the nonparametric bootstrap, and in doing so addresses this paradox. We begin by detailing background material and41

previous work in Section 2. Then, in Section 3 we introduce methodology and pseudocode for the proposed model-fitting42

algorithm. Next, in Section 4we revisit the simulation from Fig. 1 and show, via further simulations and real applications, the43

effectiveness of the new algorithm. Finally, Section 5 concludes the manuscript with a summary and comments on future44

avenues for this work.45
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