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a b s t r a c t

A method for sequential Bayesian inference of the static parameters of a dynamic state
spacemodel is proposed. Themethod is able to use any valid approximation to the filtering
and prediction densities of the state process. It computes the posterior distribution of the
static parameters on a discrete grid that tracks the support dynamically. For inference of
the state process, the Kalman filter and its extensions as well as cubature filtering have
been used. It is illustrated with several examples including the stochastic volatility model
and the challenging Kitagawa model and is compared to both online and offline methods.
It is shown to provide a good trade off between speed and performance.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Dynamic state space models (Durbin and Koopman, 2001), consisting of an unknown state Markov process represented 2

by {Xt}t∈N and noisy observations drawn from a process represented by {Yt}t∈N, that are conditionally independent, are used 3

in a wide variety of applications — e.g. wireless networks (Haykin et al., 2004), object tracking (Ristic et al., 2004) etc. Each of 4

these are X and Y-valued stochastic processes respectively. The model is specified by an initial density p(x0|θ ), a transition 5

kernel p(xt |xt−1, θ ) and an observation density p(yt |xt , θ ). These densities are defined in terms of a collection of K static 6

(non-time varying) parameters θ = (θ1, . . . , θK ). The joint model to time t is: 7

p(y1:t , x0:t , θ ) =

⎛⎝ t∏
j=1

p(yj|xj, θ )p(xj|xj−1, θ )

⎞⎠ p(x0 | θ )p(θ ), (1) 8

where y1:t = (y1, . . . , yt ) and x0:t = (x0, . . . , xt ). 9

In this paper, we propose a new approach for approximating p(θ |y1:t ), the posterior density function of static parameters 10

θ conditional on the observations up to time t 11

p(θ |y1:t ) =

∫
p(θ, x0:t |y1:t )dx0:t . (2) 12

The principal idea is to approximate the posterior on a carefully constructed grid to which points are added or deletedwhere 13

necessary. Our method is used alongside a large range of state process estimation algorithms making it highly flexible, even 14

for non-linear or non-Gaussian models. We provide evidence corresponding to our claims through a series of examples. 15
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The literature has tended to focus on computation of the predictive densities p(xt |y1:t−1, θ ) and p(yt |y1:t−1, θ ), and the1

filtering density p(xt |y1:t , θ ) at time t . Updating of these densities is by the well-known forward equations (Arulampalam et2

al., 2002); for example for the prediction of the state process we need to compute3

p(xt |y1:t−1, θ ) =

∫
p(xt |xt−1, θ )p(xt−1|y1:t−1, θ ) dxt−1, (3)4

where p(xt−1|y1:t−1, θ ) is the filtering density from time t − 1. For the linear Gaussian case with known parameters, these5

computations reduce to the closed form of the Kalman filter (Kalman, 1960). Generally, Gaussian forms of the model allows6

filtering and prediction to be done quickly, exactly and sequentially, without the need to store the data sequence (West and7

Harrison, 1997). Exact inference has also been achieved for models where the state process is discrete (Cappé et al., 2005).8

Extending inference to non-linear and/or non-Gaussian models has proved to be challenging since analytical solutions to9

the above integrals do not exist. Functional approximation approaches, derived from the Kalman filter, such as the extended10

Kalman filter (Haykin, 2001), unscented Kalman filter (Julier and Uhlmann, 1997) etc. have been proposed. Sequential Monte11

Carlo (SMC) approaches such as the bootstrap filter (Gordon et al., 1993) and auxiliary particle filter (Pitt and Shephard,12

1999) have also been widely used. Attempts have also been made to combine sampling based methods with functional13

approximations (Merwe et al., 2001).14

As regards the static parameter estimation problem, few closed form solutions are available. Different approaches15

are employed in the sequential inference literature, often involving joint inference of static parameters and the state16

process (Kantas et al., 2015). We will discuss some of the existing methodologies in the next section.17

Section 2 is a review of some of the online static parameter estimation methods, some of which are used later for18

comparison. Section 3 outlines the principle of the method. Section 4 describes the most important issues to be resolved in19

order to implement themethod: approximations to one-step ahead filtering and prediction densities, updating the posterior20

density grid over time, choice of some heuristics in the algorithm and finally, computing posteriors corresponding to new21

grid points. A discussion on the theoretical aspects of error accumulation is provided in Section 5. Section 6 illustrates the22

method and assesses its performance against alternative approaches. Section 7 contains some concluding remarks.23

2. Online parameter inference review24

In this paper, interest is not on the joint density but rather on online inference of the posterior density p(θ |y1:t ) along25

with the state filtering and prediction densities. Several related approaches have been proposed in the literature; a recent26

review is Kantas et al. (2015):27

Joint KF/EKF/UKF: A common practice in the engineering literature is to add dynamics to static parameters, such as28

assuming θt ∼ N(θt−1, Vt ) with variance Vt decreasingwith t , andmake inference on p(xt , θt |y1:t−1) at each time point using29

a single Kalman filter or extensions thereof. One advantage of this is that the state and parameters are typically correlated a30

posteriori, even in linear systems (Haykin, 2001); however this is known to suffer from numerical instability issues. A more31

fundamental problem with this approach is that it makes little sense to treat static parameters as time-varying.32

Dual KF/EKF/UKF:Dual filters assume that the state and the parameter have separate state space representations, and thus33

two filters can be run concurrently (Wan and Nelson, 1997). The prediction p(xt |y1:t−1, θ̂old) is derived using the parameter34

mean and p(θt |y1:t−1, x̂old) is updated using the filtered state mean. Because each posterior only uses the first moment of the35

other and ignores the variance, these methods are known to produce low variance posteriors.36

Online gradient method: Sequential optimization of log(p(y1:t | θ )) is also possible. If θ̂t−1 is the estimate after the first37

t − 1 observations, then it is updated to θ̂t after receiving new data yt ; see Poyiadjis et al. (2011) and Nemeth et al. (2016)38

for details. The problem of evaluating the gradient for the whole data y1:t has been bypassed in the case of hidden Markov39

models (LeGland and Mever, 1997). A typical problem associated with any gradient method is that it is extremely sensitive40

to initialization and may converge to a local maximum.41

Online EM: Online versions of the EM algorithm (Dempster et al., 1977), suitable for a dynamic state space model with42

unknownmodel parameters, have been proposed in Cappé (2011). Amajor advantage is that it always attempts tomaximize43

the likelihood, allowing methods such as variational inference to be used to estimate the parameters. However this method44

can also converge to a local maximum.45

Liu and West filter: This is the most generic particle filter that performs dual estimation of the state and parameters.46

Artificial dynamics are introduced for the parameters and subsequently a kernel density estimate of p(θ |y1:t ) is proposed47

from which θ can be sampled (Liu and West, 2000). Shrinkage is introduced to control for over-dispersion in the kernel48

density function. Amajor drawback though is that it requires a significant amount of tuning for quantities such as the kernel49

bandwidth.50

Storvik’s filter: Storvik (2002) generates particles from the parameter’s posterior distribution without assuming any51

associated random drift. It is further assumed that the posterior distribution of θ depends on a low-dimensional set of52

sufficient statistics that can be efficiently updated for each t . The choice of this set is the biggest stumbling block for this53

algorithm.54

Particle learning: Carvalho et al. (2010) have provided a modified version of Storvik’s filter which has proved to be more55

efficient. Sufficient statistics are derived for the class of conditional dynamic linearmodels (CDLM), thus providing additional56

structure to Storvik’s algorithm. Further, the position of the resampling step in Storvik’s algorithm is now interchanged with57

the propagation step, that allows particle deficiency of the posterior of θ to be reduced.58
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