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h i g h l i g h t s

• This article introduces a new dose–response models with linear effects of covariates.
• An equivalence theorem of the locally φs-optimal designs is established.
• Computational issues are also studied and presented with theoretical backups.
• The locally optimal designs are illustrated robust to the moderate misspecification of the prespecified parameters.
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a b s t r a c t

Personalized medicine is becoming more and more important nowadays since the efficacy
of a certain medicine vary among different patients. This requires to combine the effects
of the prognostic factors or covariates along with different dosages when planning a dose–
response experiment. Statistically, this corresponds to the construction of optimal designs
for estimating dose–response curves in the presence of covariates. Some characteristics of
the optimal designs are derived in order to search such optimal designs efficiently, and an
equivalence theorem of the locally φs-optimal designs is established accordingly. Compu-
tational issues are also studied and presented with theoretical backups. As applications of
the above theories, the locally optimal designs are searched out in several situations. Some
simulations reveal that the searched locally optimal designs are robust to the moderate
misspecification of the prespecified parameters.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The dose–response relationship, which illustrates the medicine efficacy under different dosages, is an important issue in
the investigation of new medicines. Constructing optimal designs for evaluating the dose–response relationship has been
studied by many authors in the past few years (see Bretz F and Branson, 2005; Bornkamp et al., 2007; Dragalin et al., 2007).
Some researchers constructed optimal designs for several specific regression models which are commonly used to describe
the dose–response relationship. For example, Dette et al. (2010) derived the locallyD- and EDp- optimal designs for the Emax,
exponential and linear-in-log models.

In clinical trails, the response to a fixed kind of medicine not only depends on treatments and dosages, but also depends
on some prognostic factors which vary from person to person. For example, in the schizophrenia study in Ishigooka et al.
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(2000), patients who took the same antipsychotic (olanzapine) gave very different responses. This phenomenon motivated
researchers to consider individualized treatments for patients. Qian and Murphy (2011) introduced a two-stage regression-
based approach, named as Q-learning, to solve this problem. The first stage of their method estimates the conditional mean
for any treatment and covariates, and the second stagederives the optimal treatment rule from the relationship established in
the first stage. It is obvious that the efficiency ofQ-learning is determinedby the estimation of the dose–response relationship
in the first stage, which can be improved by using an appropriate design scheme. This motivates us to construct efficient
designs which consider the effects of different dosages and covariates.

This paper focuses on the design problem for dose–responsemodelswith linear effects of covariates. Although the optimal
designs for dose–response relationships have beenwidely discussed, individual prognostic factors are usually excluded from
the considered models since they increase the complexity of analysis. The most related work is given by Atkinson (2015)
who studied the D-optimal designs for comparing two treatments. Wang and Ai (2016) generalized the work of Atkinson
(2015) by providing the D-optimal designs with multiple treatments.

Finding the optimal designs for dose–response models with linear effects of covariates is not trivial because there are
infinite candidate dose levels and the methodologies used in Atkinson (2015) and Wang and Ai (2016) cannot be extended
directly. To infer the optimal individualized dose rule, a good design should ensure that both the effect of each candidate
dose level and the effect of covariates are well estimated. To the best of our knowledge, there is no previous work on the
design problem for dose–response curves when the covariates are included. The purpose of this article is to find the optimal
designs in such situations.

The rest of this paper is organized as follows. Section 2 formulates the problem and gives some notations which will be
used later. In Section 3, we derive upper bounds on the number of support points for the designs which cannot be improved
upon the Loewner ordering. In Section 4, we characterize theφs-optimal designs introduced by Kiefer (1974), which contains
A-,D-, E- optimality criteria as special cases, for ourmodel and provide the corresponding searching algorithms. Some further
results for the commonly used dose–response models are also presented. Section 5 illustrates our methodology through
several examples. The robustness of our proposed designs is also evaluated in this section. Section 6 concludes this paper
with discussions. All proofs are postponed to the Appendix.

2. Statistical model and approximate designs

Consider the dose–response regression model with linear effects for the ith observation:

Yi = f (di, θ) + βTxi + εi, (1)

where Yi is the response at dose di and covariate vector xi, β is the p-dimensional unknown parameter vector, and εi’s are
independent and normally distributed with zero mean. The f (·, θ) in (1), which describes the effects of different dosages,
is a known function up to the unknown parameter vector θ ∈ Rq. The variance of εi depends on di and is modeled by
σ 2(di) = cg(di), where c is a positive real number and g(d) is a known positive function. The homoscedastic case corresponds
to g(d) ≡ 1. We assume that the f (·, θ) is differentiable with respect to θ throughout this paper. For instance, the f (·, θ) can
be selected as some commonly used dose–response models, namely the Emax, exponential and linear-in-log models, i.e.,

f (d, θ) = θ1 + θ2d/(θ3 + d), (2)

f (d, θ) = θ1 + θ2(exp(d/θ3) − 1), (3)

f (d, θ) = θ1 + θ2 log(d/θ3 + 1), (4)

respectively (see Feller et al., 2017). LetΘ = (θT ,βT )T ∈ Rq+p, which represents the vector of unknownparameters. Suppose
the dosage ranges from 0 to dmax as in Feller et al. (2017) and the covariate, xij, ranges from Lj to Uj for each j. Note that the
optimal designs do not depend on the scaling of the linear factors. Hence, the experimental region, denoted by χ , is assumed
to be [0, dmax] × [−1, 1]p throughout this paper.

Following Kiefer (1974), we define the approximate design ξd on the sub-space χd = {d} × [L,U]
p of χ as a probability

measure with masses ωd,j at the point (d, xd,j) ∈ χd, and µ as a probability measure on [0, dmax]. Note that ξ =
∫
ξddµ is a

probability measure on χ . Hence, ξ is a well-defined approximate design on the experimental region χ . For µ = {(di, ωdi ) :

i = 1, . . . ,m}, design ξ =
∑m

i=1ωdiξdi implies that ξ puts weight ωdi on design ξdi for i = 1, . . . ,m. In the theory introduced
by Kiefer (1959), the approximate design ξ can be represented as ξ = {(ξdi , ωdi ) : i = 1, . . . ,m}, where ξdi is the design over
the covariates at the dose level di for i = 1, . . . ,m. When only two dose levels exist, the design ξ in this paper has the same
form with the designs given in Atkinson (2015). Comments on the exact designs for a specified number of patients can be
found in Atkinson (2015).

By standard methods, the information matrix ofΘ in model (1) for ξ = {(ξdi , ωdi ) : i = 1, . . . ,m} can be written as

I(ξ ) =

m∑
i=1
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