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a b s t r a c t

Bayesian optimal experimental design has immense potential to inform the collection of
data so as to subsequently enhance our understanding of a variety of processes. However,
a major impediment is the difficulty in evaluating optimal designs for problems with
large, or high-dimensional, design spaces. An efficient search heuristic suitable for general
optimisation problems, with a particular focus on optimal Bayesian experimental design
problems, is proposed. The heuristic evaluates the objective (utility) function at an initial,
randomly generated set of input values. At each generation of the algorithm, input values
are ‘‘accepted’’ if their corresponding objective (utility) function satisfies some acceptance
criteria, and new inputs are sampled about these accepted points. The new algorithm is
demonstrated by evaluating the optimal Bayesian experimental designs for the previously
considered death, pharmacokinetic and logistic regression models. Comparisons to the
current ‘‘gold-standard’’ method are given to demonstrate the proposed algorithm as
a computationally-efficient alternative for moderately-large design problems (i.e., up to
approximately 40-dimensions).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Optimising the design of an experiment is an important consideration inmany areas of science, including, but not limited,
to: biology (Faller et al., 2003), clinical trials (Berry, 2004) and epidemiology (Pagendam and Pollett, 2013). The theory of
optimal experimental design is a statistical framework that allows us to determine the optimal experimental protocol to
gain the most information about model parameters, given constraints on resources.

In evaluating an optimal Bayesian design, there are two main components: the search across the design space, and
the evaluation of the utility. There have been many approaches to improving the efficiency of both aspects, summarised
by Ryan et al. (2015a). Recently, Overstall and Woods (2017) proposed the Approximate Coordinate Exchange (ACE)
algorithm to address the search aspect of the Bayesian experimental design problem. The method utilises a coordinate
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exchange algorithm to update one dimension of the design at a time, coupled with a Gaussian process in order to search
each dimension efficiently. It has been asserted that the future of optimal Bayesian experimental design lies in the ability to
evaluate the optimal designs for large-scale problems (i.e., large or high-dimensional design spaces), in a computationally-
efficient manner (Ryan et al., 2015a). In this paper, we address this by proposing a new search algorithm targeted at finding
optimal Bayesian experimental designs.

The search heuristic we present performs targeted sampling of the design space to find high utility designs, without
making any assumptions about the shape of the utility function. An initial population of random designs is generated —
synonymous with multiple algorithm runs from random initial conditions as in other optimisation routines. Our method
borrows the idea of targeting regions of high utility, as per theMCMC approach of Müller (1999), by sampling new designs at
each iteration around the ‘‘best’’ designs; chosen according to some acceptance criteria.We describe this algorithm using the
notion of ‘‘survival-of-the-fittest’’, as the ‘‘fittest’’ individuals –according to their objective (utility) function value – survive at
each iteration (generation) based on a user-defined acceptance criteria, to produce offspring for the next generation. Hence,
we propose this as a new type of evolutionary algorithm (e.g., Goldberg, 1989), and refer to it herein as the Induced Natural
Selection Heuristic (INSH).

By independently sampling new designs around each accepted design, we aim to avoid the pitfalls associated with some
other optimisation routines. For example, INSH is able to sample multiple regions of high utility at a time, thus exploring
multiple local optima simultaneously, rather than potentially being stuck at a single local optima. Furthermore, by not
combining the retained designs in anyway, INSH avoids the potential tomove to a region of low utility that is at the ‘‘centre’’
of multiple local optima — as may occur in a cross-entropy or genetic algorithm. By taking a sampling approach, as opposed
to trying to approximate the function, INSH makes no assumptions about the shape of the utility function — thus, it is not
limited to utility functions that are, for example, smooth. Utilising (embarrassingly) parallel computation tools, the method
can efficiently evaluate the utility for a large number of designs in each iteration.

The ACE algorithm has allowed the consideration of Bayesian optimal designs for a larger, more-complex class of
statistical models and experiments than was possible with previous algorithms. There are a number of drawbacks to ACE,
however. By searching in one-dimension at a time, ACE risks missing the globally-optimal design, and instead may find
only local optima. An approach to avoid this is to re-run the algorithm from a number of randomly generated initial
designs (Overstall and Woods, 2017). Similarly, as noted by the authors, by searching in one-dimension at a time, the
algorithm will be inefficient in scenarios where there is a large correlation between the design variables — a problem
which adds to the difficulty in choosing a suitable number of iterations for each phase of the algorithm. The algorithm
requires a sufficiently-good estimate of the utility when determining whether to accept the candidate design — spurious
estimates may lead to sub-optimal candidate designs being accepted, and thus push the algorithm away from regions of
high utility. Alternatively, a large improvement in the computation time arises from the estimation of the utility surface in
each dimension in the form of a Gaussian process based on a number of candidate points. This approximation to the utility
surface based on noisy evaluations of the utility aims to provide a smooth approximation to the surface. When the surface
is not smooth, or has a discontinuity (e.g., as exists in the utility surface for the death model in Fig. 2(a) at t ≈ (2.75, t2) and
t ≈ (t1, 2.75)), this has the potential to cause problems for the ACE algorithm.

In the following, we present the INSH search algorithm in a general framework, and we note that efficient evaluation of
the utility is another problem that needs to be addressed. We consider two existing approaches to evaluating the utility:
an Approximate Bayesian Computation (ABC) approach used by Price et al. (2016), in a scenario where the benefits of this
approach are realised; and a nested Monte-Carlo approximation using code from the acebayes package (Overstall et al.,
2017), otherwise.

We consider the problem of finding the optimal design for the death model, a pharmacokinetic (PK) model tracking
the concentration of a drug or treatment in the blood, and a four-factor logistic regression model. In the death and PK
examples, a design d consists of n sampling times (t1, . . . , tn), subject to some problem-specific constraints. First, we address
the question of when to observe the stochastic process in order to gain the most information about the model parameters
governing the death model. The Markovian death model has been considered previously in a Bayesian framework by Cook
et al. (2008), Drovandi and Pettitt (2013), and Price et al. (2016). We compare the optimal designs for 1–4 observation times
in order to demonstrate the efficacy of the method. Second, we consider the question of sampling times for a PK model –
a process where the design space is higher-dimensional – in order to demonstrate the efficiency of the INSH algorithm
for larger design spaces. The optimal designs are compared to those evaluated using the ‘‘gold-standard’’ Approximate
Coordinate Exchange (ACE) algorithm of Overstall and Woods (2017). We also consider the idea of sampling windows for
this example, which have been considered previously by Green and Duffull (2003), Chenel et al. (2005), Graham and
Aarons (2006), McGree et al. (2012), and Duffull et al. (2012), for example. Finally, we compare the results of the INSH
algorithm to those of the ACE algorithm for a standard four-factor logistic regression model (Overstall and Woods, 2017) —
a considerably higher-dimensional problem. We consider examples with n = 6, 10, 24, and 48 (independent) replicates in
each experiment; corresponding to a design space with up to 192 dimensions (i.e., when n = 48 replicates).

1.1. Bayesian optimal experimental design

The aim of optimal experimental design is to determine the best experimental protocol in order tomaximise some utility
of the experiment. To achieve this aim, we specify a utility function U(θ, y, d) representing howwe ‘value’ the experimental
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