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a b s t r a c t

The spatial scan test, which is often carried out by maximizing a likelihood ratio-based
statistic over a collection of cluster candidates, is widely used in cluster detection and
disease surveillance. As the likelihood ratio statistic may not be available if the exact
distribution of the response variable is not specified, a Wald-based spatial scan approach
is proposed. The idea is to construct a special explanatory variable for spatial clusters in
the linear function of a statistical model. The spatial scan test is carried out by scanning
the special explanatory variable over the collection of cluster candidates. An advantage is
that theWald-based spatial scan statistic can bridge spatial clusters and linear functions of
statistical models. It can be easily combined with well-known statistical models beyond
generalized linear models. It is expected that the proposed approach will have a great
impact on cluster detection when the likelihood inference is intractable or unavailable.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction1

The spatial scan statistic is typically formulated under hypothesis testing problemswith the null hypothesis that a disease2

rate is homogeneous in the entire region against the alternative hypothesis that the disease rate is elevated in a subregion.3

It has been successfully formulated under the framework of logistic linear models for Bernoulli or binomial data (Kulldorff4

and Nagarwalla, 1995) and loglinear models for Poisson data (Assuncao and Costa, 2006; Zhang and Lin, 2009). The spatial5

scan approach, which is carried out by a spatial scan statistic (Kulldorff, 1997; Tango and Takahashi, 2005), is popular and6

widely used in cluster detection and disease surveillance. It has been considered as an important and fundamental tool in7

spatial epidemiology. The spatial scan approach has been extended to detect clusters in multinomial data (Jung et al., 2010),8

normal data (Huang et al., 2009), and survival data (Bhatt and Tiwari, 2014; Huang et al., 2007). It has also been extended9

to account for spatial correlation (Loh and Zhu, 2007), overdispersion (Zhang et al., 2012), and inflated zeros (Cançado et al.,10

2014; de Lima et al., 2015, 2017). Previous spatial scan statistics are mostly formulated under the framework of likelihood11

ratio statistics. As the computation of a likelihood ratio statistic needs the exact distribution, the implementation of the12

previous spatial scan approach is difficult if the exact distribution is not provided or hard to compute.13

The likelihood ratio-based spatial scan statistic has nice theoretical properties. By the Neyman–Pearson Lemma14

(Lehmann, 1986, P. 72), the uniformlymost powerful (UMP) test can be formulated by the likelihood ratio statistic, indicating15

that likelihood ratio-based spatial scan statistics are powerful in detecting spatial clusters. It is not claimed by the Neyman–16

Pearson Lemma that the likelihood ratio statistic can dominate any other test statistic. We may have other tests which are17

as powerful as the likelihood ratio test. An example is the well-known t-test in linear models, which provides a uniformly18
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most powerful unbiased (UMPU) test for the significance of regression coefficients (Lehmann, 1986, P. 397). As the t-statistic 1

becomes the Wald statistic in linear regression, we study the Wald-based spatial scan approach in this article. 2

The formulation ofWald-based spatial scan statistics is consistent with output formats of general statistical models. If the 3

distribution of a response variable is modeled by a linear function of explanatory variables, then any valid fitting procedure 4

should provide estimates of linear coefficients and their variance–covariance matrix. A set of Wald statistics (Wald, 1943) is 5

basically used to assess the significance of individual linear coefficients. AWald-based spatial scan statistic can be formulated 6

if we can transform spatial clusters into explanatory variables. Since the derivation can be based on any estimationmethods, 7

the Wald-based spatial scan statistic provides an important option if the computation of the likelihood ratio statistic is 8

difficult or even impossible. Although initial ideas for Poisson data can be traced back (Zhang and Lin, 2009, 2013), the 9

formal approach to statistical models beyond GLMs (generalized linear models) has not been investigated, which motivates 10

the present research. 11

The proposed approach is important in extension and generalization of the spatial scan test for cluster detection. Note 12

that Kulldorff’s spatial scan statistic (Kulldorff, 1997) is constructed via a likelihood ratio statistic in a Bernoulli or a Poisson 13

model. It cannot be used if the exact distribution of data is not provided or intractable. Tango and Takahashi’s flexibly shaped 14

spatial scan statistic (Tango and Takahashi, 2005) is also constructed via a likelihood ratio statistic. It faces the same problem 15

if the likelihood function is not provided or intractable. An obvious and important example is the construction of the spatial 16

scan statistic in the quasi-Poissonmodel (McCullagh, 1983). As the variability of the disease count exceeds the corresponding 17

value provided by the Poisson model, disregarding the presence of overdispersion in the quasi-Poisson model may lead to 18

an inflation of type I error probabilities (Zhang et al., 2012). This phenomenon is often termed as the overdispersion problem 19

in GLMs. Since the exact distribution is usually not specified, the likelihood ratio statistic is generally not well-defined. To 20

solve the problem, one can introduce a Gamma distribution for overdispersion in the quasi-Poissonmodel. Thismay induce a 21

likelihood ratio-based quasi-Poisson spatial scan statistic, but the derivation of a likelihood ratio-based spatial scan statistic 22

is hard if a normal prior is utilized. If aWald-based approach is used, thenwe can address the difference between the choices 23

of the Gamma and the normal distributions for overdispersion. In addition, the proposedWald-based spatial scan approach 24

bridges cluster detection and linear functions of statistical models. It can be easily combined with well-known statistical 25

approaches when response and explanatory variables are involved. 26

The article is organized as follows. In Section 2, we briefly review the likelihood ratio-based spatial scan statistics. In 27

Section 3, we propose the Wald-based spatial scan approach, which also contains its specifications to a few important 28

statistical models, such as the negative binomial, the quasi-binomial, and the quasi-Poisson models. Note that they are not 29

exponential family distributions. These examples indicate that the spatial scan test can still be used if the model is not a 30

GLM. In Section 4, we numerically evaluate the properties of our Wald-based spatial scan statistic in comparison with the 31

likelihood ratio-based spatial scan statistic. In Section 5, we provide a discussion. 32

2. Likelihood ratio-based spatial scan statistic 33

The scan approach was originally developed for one dimensional point process (Naus, 1965). By a likelihood ratio-based 34

method, Kulldorff (1997) extended it to cluster detection for two-dimensional aggregated unit data when the response 35

follows Poisson or Bernoulli distributions. Kulldorff’s scan approach was later extended to other distributions. In order to 36

understand the impact of our Wald-based spatial scan statistic, it is important to review the likelihood ratio-based spatial 37

scan statistic at the beginning. Here we only review the approach to the Poisson data. 38

Suppose a study area has been partitioned into m spatial units. Each has an at-risk population size and a number of case 39

counts. Let Yi be the count, yi be the observed count, and ni be the at-risk population size in unit i, for i = 1, . . . ,m. Let 40

C be the collection of cluster candidates. For a selected C ∈ C, let Y =
∑m

i=1Yi, y =
∑m

i=1yi, n =
∑m

i=1ni, YC =
∑

i∈CYi, 41

yC =
∑

i∈Cyi, nC =
∑

i∈Cni, YC̄ =
∑

i∈C̄Yi, yC̄ =
∑

i∈C̄yi, and nC̄ =
∑

i∈C̄ni. Then, y, yC and yC̄ are the observed values of Y , YC 42

and YC̄ , respectively. Consider the test for the null hypothesis as 43

Yi ∼ Poisson(θ0ni), i = 1, . . . ,m, (1) 44

against the alternative hypothesis for hot spot clusters as 45

Yi ∼ Poisson(θ0ni), i ∈ C̄; or Yi ∼ Poisson(θCni), i ∈ C ∈ C, θC > θ0. (2) 46

The likelihood function is 47

LC (θ0, θC ) =

(
m∏
i=1

nYi
i

Yi!

)(∏
i∈C

θ
Yi
C e−θC ni

)⎛⎝∏
i∈C̄

θ
Yi
0 e−θ0ni

⎞⎠ . (3) 48

The likelihood ratio statistic is 49

ΛC =
maxθC>θ0 LC (θ0, θC )
maxθC=θ0 LC (θ0, θC )

=

(
YC/nC

Y/n

)YC(YC̄/nC̄

Y/n

)YC̄
, (4) 50
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