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a b s t r a c t

Fisher’s linear discriminant analysis (LDA) is extended to both densely recorded functional
data and sparsely observed longitudinal data for general c-category classification problems.
An efficient approach is proposed to identify the optimal LDA projections in addition to
managing the noninvertibility issue of the covariance operator emerging from this exten-
sion. To tackle the challenge of projecting sparse data to the LDA directions, a conditional
expectation technique is employed. The asymptotic properties of the proposed estimators
are investigated and asymptotically perfect classification is shown to be achievable in
certain circumstances. The performance of this new approach is further demonstratedwith
both simulated data and real examples.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Classification identifies the class, from a set of classes, to which a new observation belongs, based on the training data 2

containing observations whose class labels are known. Due to its importance in many applications, statistical approaches 3

have been extensively developed. To name but a few, principal component analysis (PCA, Turk and Pentland, 1991), Fisher’s 4

linear discriminant analysis (LDA, Fisher, 1936; Rao, 1948), partial least square approaches (PLS, Barker and Rayens, 2003), 5

etc. have all been explored for classification. The common essence of these approaches is to find optimal projections based 6

on a particular criterion for subsequent classification. While the data dimension is moderate, these approaches or their 7

variants often work nicely. With the advent of modern technology and devices for collecting data, the dimension of data can 8

become very high and may be intrinsically infinite, such as functional data; this requires the aforementioned approaches to 9

be adapted. Motivated by the Fisher’s LDA, we propose sensible functional LDA (sFLDA) to search the optimal projections for 10

subsequent classification. 11

LDA aims to find ideal linear projections and performs classification on the projected subspace. Ideal projections are those 12

maximizing the projected distances between classes while keeping the projected distances among subjects in the same class 13

minimized. Take a p-dimensional case for example; mathematically the ideal projection is the eigenvector b in 14

Σ−1
W ΣBb = λb, (1.1) 15

where Σ−1
W denotes the inverse of the within-class covariance matrix ΣW , and ΣB is the between-class covariance matrix 16

that characterizes the variation of class means. Under classical multivariate settings,ΣW is invertible. Please refer to Mardia 17

et al. (1980) for the details of LDA. Due to its simplicity, LDA has been widely employed in many applications. 18

Extending (1.1) directly to functional data is tricky due to the noninvertible covariance operator. Specifically, the inverse 19

of the covariance operator is unbounded if the functional data is in L2, which is commonly assumed in the functional data 20
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analysis literature (e.g., Hall et al., 2006; Li and Hsing, 2010; Delaigle and Hall, 2012, etc.). To elucidate our idea, let us1

first introduce notations. Suppose the data consists of c classes. Let Xk be an L2 stochastic process, defined on a finite2

compact interval T , in class k with mean function µk and a common covariance function ΓW . Mercer’s theorem implies3

that the covariance function can be further decomposed as ΓW (s, t) =
∑

∞

j=1λjφj(s)φj(t), where λ1 > λ2 > · · · > 0, φj4

is the corresponding eigenfunction of λj and
∑

∞

j=1λj < ∞. Functional principal component analysis (FPCA) corresponds5

to a spectral decomposition of the covariance and leads to the well-known Karhunen–Loève decomposition of the random6

function,7

Xk(t) = µk(t) +

∞∑
j=1

Ak,jφj(t), (1.2)8

where Ak,j = ⟨Xk − µk, φj⟩ is the jth principal component score, E(Ak,j) = 0, var(Ak,j) = λj and t ∈ T . Here ⟨·, ·⟩9

stands for the inner product in L2, i.e., ⟨a, b⟩ =
∫
T a(t)b(t)dt for a, b ∈ L2(T ). Since we do not assume completeness on10

{φj}
∞

j=1, µk(t) =
∑

∞

j=1⟨µk, φj⟩φj(t) is not guaranteed; note that a set of infinite number of basis functions does not imply11

completeness, e.g., Theorem 2.4.18 in Hsing and Eubank (2015). Further, we do not impose any parametric assumptions on12

Xk other than smoothness conditions on µk and on ΓW , which are quite common in functional data analysis (e.g., Rice and13

Silverman, 1991; Chiou et al., 2003; Hall et al., 2006, etc.)14

To handle the unboundedΓ −1
W , basis-based approaches approximate the functional datawith a set of finite basis functions15

and turn the functional problem into a multivariate one. For example, Hall et al. (2001), Glendinning and Herbert (2003),16

Müller (2005), Leng and Müller (2006), and Song et al. (2008) performed classification based on FPCA; Preda et al. (2007)17

classified functional data by means of PLS; Berlinet et al. (2008), Rincón and Ruiz-Medina (2012), and Chang et al. (2014)18

developed approaches based on wavelets. However, doing so might lose crucial information for subsequent classification19

due to an inappropriate set of basis functions. Take a binary case for example, let µ1(t) = sin(2π t), µ2(t) = −µ1(t), and20

φj(t) =
√
2 cos(2jπ t) for j = 1, . . . ,∞ and t ∈ [0, 1]; neither µ1 nor µ2 can be represented with {φj}

∞

j=1. Therefore, FPCA21

based approaches might not be a good choice for such a case as the information of µ1 is completely gone after projections.22

This argument is substantiated with simulated data in Section 6.23

To search the projections of sFLDA efficiently as well as sensibly, we exploit the data structure when designing the24

procedure. Specifically, SB, the space spanned by {µk}
c
k=1, possesses the information of how to maximize the distances25

between the projected class centers while SW , the space spanned by {φj}
∞

j=1, contains the information of how to reduce the26

within-class variations. With these in mind and to properly handle the noninvertibility issue of ΓW , we propose a sensible27

procedure to find the projections in S0 and in S1 sequentially, where S1 (resp. S0) is the projection of SB on SW (resp. S⊥

W , the28

orthogonal complement of SW ). In particular, the projections in S0 can completely discriminate functional observations in29

different classes (see Theorem 4.4 for details) while those in S1 are the optimal projections of functional LDA. Most existing30

approaches do not appear to appreciate that the optimal linear projections could be a set of the projections obtained in31

S0 and in S1; this may be because it suffices to consider projections in either S1 or S0 for binary classification problems.32

Accordingly, our procedure is more general.33

Despite the difference in sampling schemes, functional data and longitudinal data come from similar sources. Therefore, it34

is practical to develop unified approaches for them (e.g.,Müller, 2005; Hall et al., 2006; Jiang andWang, 2010, etc.). James and35

Hastie (2001) employed natural cubic splines to tackle the problemof sparsity.Wu and Liu (2013) applied the FPCA approach36

proposed in Yao et al. (2005) to reconstruct sparsely observed longitudinal data and performed robust support vector37

machine (SVM) on the reconstructed curves. This strategy leads to the same predicament as other FPCA based approaches38

mentioned earlier. The major challenge in extending Fisher’s LDA to longitudinal data is to perform classification on a new39

subject with longitudinal observations. The sparsity and irregularity of the observations make the projections difficult. We40

propose an imputation approach based on a conditional expectation technique (in Section 5) to resolve the sparsity issue41

without losing the subtle information about the mean functions.42

There exist other functional classification approaches under different considerations. To name a few, Ferraty and Vieu43

(2003) and Galeano et al. (2015) investigated distance-based approaches, Hastie et al. (1995) and Araki et al. (2009)44

developed regularized approaches, Epifanio (2008) proposed an approach to classify functional shapes, Ferraty and Vieu45

(2006) suggested various of approaches based on k nearest neighbors (kNN) and kernel classification, Cuevas et al. (2007)46

introduced a depth-based approach, Li et al. (2012) recommended amethod based on DD-plots, and Delaigle and Hall (2013)47

developed a functional classification framework when the observations were fragments of curves.48

The rest of this paper proceeds as follows. In the next section, themotivation and the framework of sFLDA are introduced.49

The proposed estimators and their asymptotic properties are provided in Sections 3 and 4, respectively. We propose an50

imputation approach for longitudinal data while performing projections in Section 5. In Section 6, simulation studies under51

three data configurations are conducted. In Section 7, our approach, along with some competitors, is applied to two real52

data examples. Conclusions and discussions are given in the last section. Appendices include the assumptions made for53

the asymptotics, some details for Section 2.1 and the leave-one-curve-out cross-validation (CV) formulas of bandwidth54

selections. All the proofs are contained in the supplementary material.55
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