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a b s t r a c t

Noisy and missing data are often encountered in real applications such that the observed
covariates containmeasurement errors. Despite the rapid progress of model selectionwith
contaminated covariates in high dimensions,methodology that enjoys virtues in all aspects
of prediction, variable selection, and computation remains largely unexplored. In this
paper, we propose a new method called as the balanced estimation for high-dimensional
error-in-variables regression to achieve an ideal balance between prediction and variable
selection under both additive and multiplicative measurement errors. It combines the
strengths of the nearest positive semi-definite projection and the combined L1 and concave
regularization, and thus can be efficiently solved through the coordinate optimization
algorithm. We also provide theoretical guarantees for the proposed methodology by
establishing the oracle prediction and estimation error bounds equivalent to those for Lasso
with the clean data set, as well as an explicit and asymptotically vanishing bound on the
false sign rate that controls overfitting, a serious problem under measurement errors. Our
numerical studies show that the amelioration of variable selection will in turn improve the
prediction and estimation performance under measurement errors.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Due to the highly developed technologies, high-dimensional statistical learning has been widely applied in various
domains including economics, genomics, molecular biology, machine learning, and so on. To facilitate statistical inference in
high dimensions, many powerful methods based on sparsemodeling via regularization were proposed, including Tibshirani
(1996), Fan and Li (2001), Zou and Hastie (2005), Zou (2006), Candès and Tao (2007), Fan et al. (2009), Zhang (2010), Li
et al. (2011), Sun and Zhang (2012), Fan and Lv (2014), Kong et al. (2016), Weng et al. (2017), Li et al. (2017), and among
many others. While much of the existing literature focuses on the clean data setting where covariates are fully observed
withoutmeasurement errors, we often encounter noisy ormissing data in real applications such as surveys, votes, and sensor
networks. Under such circumstances, naively applying the methods designed for clean data sets to analyze corrupted data
will result in inconsistent and unstable estimates, thus leading to incorrect conclusions, especially in the high-dimensional
settings (Liang and Li, 2009; Rosenbaum and Tsybakov, 2010). Therefore, it is important to develop approaches for model
selection and estimation under measurement errors.

To alleviate the impacts ofmeasurement errors in high dimensions, variousmethodswere proposed for variable selection
and parameter estimationwith noisy ormissing data in recent years. For instance, Liang and Li (2009) suggested tominimize
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the penalized least squares after accounting for the covariance structure of the additive errors for partially linear models.
Similarly, Ma and Li (2010) incorporated the error information in penalized estimating equations for general parametric and
semi-parametric measurement error models. Furthermore, a Lasso-type estimator was proposed in Loh and Wainwright
(2012) for high-dimensional sparse regression by replacing the corrupted Gram matrix with unbiased estimate of the true
Grammatrix. However, it is challenging to solve the associated optimization problems since the negative likelihood functions
often become nonconvex after incorporating the information of measurement errors. To address this issue, Datta and Zou
(2017) approximated the unbiased Gram matrix estimate by the nearest positive semi-definite matrix and proposed the
convex conditioned Lasso (CoCoLasso), which enjoyed the virtues of convex optimization and nice estimation accuracy in
high-dimensional error-in-variables regression. For more discussions on methodology and applications of measurement
error models, please refer to Fuller (1987), Carroll et al. (1995), Little and Rubin (2014), Li et al. (2016), and among many
others.

Although CoCoLasso achieved computational advantages over most of the existing methods, sparse modeling via Lasso
penalty tends to induce biases and yields a larger model than the true one to minimize the prediction errors (Bickel et
al., 2009; Hastie et al., 2009). In the clean data setting, the problems of biases and overfitting can be significantly reduced
by further applying a least squares refitting on the support of Lasso estimate. However, a refitting based on the corrupted
data will induce more biases as the true covariates are unknown. This loss of information was shown to cause overfitting
and make the estimate very unstable in high dimensions (Rosenbaum and Tsybakov, 2010). In this paper, we propose a
new method called as balanced estimation to ameliorate the issues of biases and overfitting under measurement errors by
combining the strengths of the nearest positive semi-definite projection in Datta and Zou (2017) and the combined L1 and
concave regularization in Fan and Lv (2014). The proposed balanced estimator utilizes the oracle prediction property of
Lasso penalty and refines the selected model by an additional concave regularization with contaminated covariates. In fact,
the idea of combining the strengths of different penalties were also explored in the clean data setting. See, for example, Zou
and Hastie (2005), Liu and Wu (2007), Zou and Zhang (2009) and Fan and Lv (2014).

Themajor contributions of this paper are twofold. First,wedevelop anewmethod for high-dimensional error-in-variables
regression that enjoys nice estimation accuracy and successfully prevents overfitting under both additive andmultiplicative
measurement errors. It utilizes the combined L1 and concave penalties to achieve an ideal balance between prediction and
variable selection based on a convex estimate of the negative log-likelihood function, which can be efficiently solved through
the path-following coordinate optimization algorithm. The amelioration of overfitting can significantly improve the model
interpretability. Second, we provide theoretical guarantees for the proposed method by establishing oracle prediction and
estimation error bounds equivalent to those in Bickel et al. (2009) for Lasso with the clean data set. Moreover, an explicit
and asymptotically vanishing bound on the false sign rate is proved for our method, which is generally not shared by
the CoCoLasso estimate. Our numerical studies show that the amelioration of variable selection will in turn improve the
prediction and estimation performance under measurement errors.

The remainder of this paper is organized as follows. Section 2 presents the problem setup and the new methodology
of balanced estimation. Theoretical properties including bounds on the oracle estimation errors and the number of falsely
discovered signs are established in Section 3.Weprovide numerical studies in Section 4. Section 5 concludeswith discussions
and possible future work. The proofs and additional technical details are provided in the Appendix.

Notations. For a vector x = (x1, . . . , xp)⊤, denote ∥x∥q =

(∑p
j=1|xj|

q
)1/q

the Lq-norm for q ∈ (0, ∞), ∥x∥0 = |{j : xj ̸= 0}|,

and ∥x∥∞ = max1≤i≤p|xi|. For a matrix A = (aij) ∈ Rp×q, denote ∥A∥1 = max1≤j≤q
∑p

i=1|aij|, ∥A∥∞ = max1≤i≤p
∑q

j=1|aij|,
∥A∥max = maxi,j|aij|, ∥A∥2 = Λmax(A⊤A)1/2 thematrix L1-norm, L∞-norm, elementwisemaximumnorm, and spectral norm,
respectively, where Λmin(A) and Λmax(A) are the minimum and maximum eigenvalues of the given matrix A.

2. Balanced estimation under measurement errors

2.1. Model setting

In the clean data setting, high-dimensional linear regression model can be expressed as

y = Xβ + ε, (2.1)

where y = (y1, . . . , yn)⊤ is the n-dimensional response vector, X = (xij)n×p is the fixed design matrix with p covariates,
β = (β1, . . . , βp)⊤ is the p-dimensional regression coefficient vector, and ε ∼ N(0, σ 2In) is an n-dimensional error vector
independent of X with In denoting the n × n identity matrix.1 The columns of X are assumed to have a common L2 norm
n1/2, matching that of the constant covariate 1 for the intercept.

1 The Gaussian distribution is assumed for simplicity, and similar theoretical results hold when the tail probability of the error vector decays
exponentially.
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