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a b s t r a c t

Regression analysis of failure time data has been discussed by many authors and for
this, one of the commonly used models is the additive hazards model, for which some
inference procedures have been developed for various types of censored data. In this paper,
a much general type of censored data, case K informatively interval-censored data, is
considered for which there does not seem to exist an established inference procedure. For
the problem, a joint modeling approach that involves a two-step estimation procedure
and the sieve maximum likelihood estimation is presented. The proposed estimators
of regression parameters are shown to be consistent and asymptotically normal, and a
simulation study conducted suggests that the proposed procedure works well for practical
situations. In addition, an application is provided.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Regression analysis of failure time data has been discussed by many authors and for this, one of the commonly used
models is the additive hazards model, which assumes that the covariates of interest have additive effects on the failure
time of interest and is often used when such types of effects are of interest such as in social sciences (Lin and Ying, 1994).
Correspondingly some inference procedures for it have been developed for various types of censored data (Lin and Ying,
1994; Lin et al., 1998; Sun et al., 2006;Wang et al., 2010; Yin and Cai, 2004). Among them, a highly cited one is the estimating
equationmethod given by Lin and Ying (1994) for right-censored failure time data. In this paper, we consider amuch general
type of censored data, case K informatively interval-censored data, for which there does not seem to exist an established
inference procedure.

Interval-censored failure time data have recently attracted much attention due to their general structure and common
occurrence inmany areas such as demographical, financial andmedical studies among others (Sun, 2006). In these situations,
the exact occurrence time of failure event is not observed and instead is known only to belong to a window or an interval. It
is apparent that interval-censored data include right-censored data as a special case and can occur in different forms. Among
them, one that has been discussed by many is case I interval-censored data, which is also often referred to as current status
data (Huang, 1996; Lin et al., 1998; Ma et al., 2015). By them, we usually mean that each study subject is observed only
once and the only observed information for the failure event of interest is whether the event has occurred or not before the
observation time. In other words, the failure time is either left- or right-censored. Case K interval-censored data can be seen
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as a generalization of case I interval-censored data, and they mean that for each study subject, there exists a sequence of
observation time points and one only observes between which two time points the failure event occurs.

Manymethods have been developed for regression analysis of interval-censored failure time data for the situation where
the censoring mechanism is independent of the failure time of interest (Chen et al., 2013; Huang, 1996; Sun, 2006). Some
approaches have also been proposed for the case where the censoring mechanism may be related to the failure time of
interest, which is often said to have informative censoring (Ma et al., 2015; Wang et al., 2016; Zhang et al., 2005, 2007).
In particular, Wang et al. (2010) and Zhao et al. (2015) discussed regression analysis of informatively interval-censored
data arising from the additive hazards model. The former considered case II interval-censored data, a special case of case K
interval-censored data, while the latter investigated current status data. To deal with informative censoring or model the
relationship between the failure variable of interest and censoring variables, two commonly used methods are the copula
model approach and the frailty model approach. In the following, wewill present a frailty model-based inference procedure.

The remainder of this article is organized as follows. First we will begin in Section 2 with introducing some notation
and describing the assumed models as well as the structure of the observed data. The resulting likelihood function is then
presented. In Section 3, a two-step estimation procedure is proposed for inference and in the procedure, the estimated
sieve maximum likelihood estimation approach is used. The proposed estimators of regression parameters are shown to be
consistent and asymptotically normal. Section 4 presents some results obtained from an extensive simulation study, which
indicate that the proposedmethod seems toworkwell for practical situations. In Section 5, the proposed approach is applied
to a set of case K interval-censored data arising from an AIDS study and Section 6 contains some discussions and concluding
remarks.

2. Notation, assumptions and models

Consider a failure time study that involves n independent subjects and let Ti denote the failure time of interest for subject
i. Also for subject i, suppose that there exists a p-dimensional vector of covariates denoted by xi and there exists a sequence
of observation times Ui0 = 0 < Ui1 < Ui2 < · · · < UiKi , where Ki denotes the number of observations on the subject. Define
Ñi(t) =

∑Ki
j=1I(Uij ≤ t) and δij = I(Uij−1 < Ti ≤ Uij), i = 1, . . . , n, j = 1, . . . , Ki. Then Ñi(t) denotes the total number of

observation times up to time t for the ith subject and jumps only at each observation time, and the observed data have the
form

O =

{
Oi = (τi,Uij, δij, xi, j = 1, . . . , Ki), i = 1, . . . , n

}
,

which are usually referred to as case K interval-censored data. In the above, τi denotes the follow-up time on the ith subject
that will be assumed to be independent of Ti.

To describe the covariate effects and the relationship between the failure time of interest and the censoring mechanism,
we will assume that there exists a latent variable bi and given xi and bi, Ti and Ñi(t) are independent. Also we will assume
that given xi and bi, Ti follows the additive hazards frailty model

λi(t|xi, bi) = λ0(t) + x⊤

i β1 + biβ2 , (1)

where λ0(t) denotes an unknown baseline hazard function and β1 and β2 are unknown regression parameters. Furthermore
it will be assumed that given xi and bi, Ñi(t) is a nonhomogeneous Poisson process with the intensity function

λih(t|xi, bi) = λ0h(t) exp(x⊤

i α + bi) , (2)

whereλ0h(t) is an unknown continuous baseline intensity function andα a vector of regression parameters asβ1 andβ2. Note
that models (1) and (2) with bi = 0 have been commonly used in the analysis of failure time data (Klein and Moeschberger,
2003) and event history data (Cook and Lawless, 2007), respectively. It is apparent that the parameter β2 represents the
extent of the association between the failure time and the observation process. The two will be independent if β2 = 0.

Define β = (β⊤

1 , β2)⊤ and Λ0(t) =
∫ t
0 λ0(s)ds. For inference about models (1) and (2), if the distribution of the bi’s is

known, it is apparent that one could employ the observed likelihood function that would involve their distribution and

L(β, Λ0|b′

is) =

n∏
i=1

{ Ki∏
j=1

(
Si(Uij−1) − Si(Uij)

)δij
Si(UiKi )

1−
∑Ki

j=1 δij

}
, (3)

the conditional likelihood function given the Uij’s, bi’s and xi’s, where Si(t) = exp(−Λ0(t) − (x⊤

i β1 + biβ2)t). On the other
hand, the likelihood would involve some difficult integrations and also the distribution of the bi’s is usually unknown. To
avoid these issues, in the next section, we present a two-step estimation procedure that can be easily implemented.

3. A two-step estimation procedure

Now we will present a two-step estimation procedure for inference about models (1) and (2) by following the ideas
discussed in Huang and Wang (2004) and Wang et al. (2016). The former considered regression analysis of recurrent event
data and the latter discussed regression analysis of case K interval-censored data under the Coxmodel. Themain idea behind
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