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a b s t r a c t

Identifying significant outliers or atypical objects frommultimodal datasets is an essential
and challenging issue for biomedical research. This problem is addressed, using the influ-
ence function ofmultiple kernel canonical correlation analysis. First, the influence function
(IF) of the kernelmean element, the kernel covariance operator, the kernel cross-covariance
operator and kernel canonical correlation analysis (kernel CCA) are studied. Second, an IF
of multiple kernel CCA is proposed, which can be applied to multimodal datasets. Third,
a visualization method is proposed to detect influential observations of multiple sources
of data based on the IF of kernel CCA and multiple kernel CCA. Finally, to validate the
method, experiments on both synthesized and imaging genetics data (e.g., SNP, fMRI, and
DNA methylation) are performed. To examine the outliers, both the stem-and-leaf display
and distribution based technique are used. The performance of the proposed approach is
illustrated on 116 candidate regions of interest (ROIs) from the fMRI data of schizophrenia
study to identify significant ROIs. The proposedmethod and two state-of-the-art statistical
methods have identified 8, 34, and 10 ROIs, respectively. Based on an online database,
the brain mappings of the selected common 7 ROIs indicate the irregular brain regions
susceptible to schizophrenia. The results demonstrate that the proposedmethod is capable
of analyzing outliers and the influence of observations, and can be applicable tomany other
biomedical data which are often high-dimensional and multi-modal.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Imaging genetics research has essentially focused on discovering unique and co-association effects, but typically ignoring 2

atypical objects in genetics as well as non-genetics variables even when such objects are present. Outliers may be right, but 3

we need to examine for transcription errors, which are commonly made by human operators or a machine. Outliers can 4

also cause difficulties for classical statistical methods (Gogoi et al., 2011). When applying a statistical approach to imaging 5

genetics data containing outliers, results can be deceptive. To overcome this problem, many robust methods have been 6

developed which are less sensitive to outliers. The goal of robust statistics is to use the bulk of the data to identify points 7

deviating from themajority of the data (Huber andRonchetti, 2009;Hampel et al., 2011;Naser andHamzah, 2012; Alamet al., 8

2016). It is well-known that most robust methods are computationally intensive and experience the curse of dimensionality 9

problem. The outliers need to be removed or downweighted prior to fitting non-robust statistical or machine learning 10

approaches (Filzmoser et al., 2008; Oh and Gao, 2009; Roth, 2006). 11
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The incorporation of various unsupervised learning methods into genomic analysis is a rather recent topic. Using the1

dual representations in problems of supervised and unsupervised learning, the task of learning frommultiple data sources is2

related to kernel-based data integration, which has been actively studied in the last decade (Charpiat et al., 2015; Hofmann et3

al., 2008; Alam, 2014). Kernel fusion in unsupervised learning has a close connection with unsupervised kernel methods. As4

unsupervised kernelmethods, kernel principal component analysis (kernel PCA) (Schölkopf et al., 1998; Alam and Fukumizu,5

2014), kernel canonical correlation analysis (kernel CCA) (Akaho, 2001; Alam and Fukumizu, 2015, 2013), weightedmultiple6

kernel CCA (Yu et al., 2011) have been extensively studied for decades. However, these methods are not robust and thus are7

sensitive to contaminated data. To apply all of these non-robust methods to genomics data, outliers identification or robust8

approaches are essential.9

Nowadays, influence function (IF) based methods have been used to identify an influence observation. From a statistical10

perspective, IF reflects the rate of change in a functional upon a small amount of contamination by another distribution11

(Hampel et al., 1986). Debruyne et al. (2010) have proposed a visualization method for detecting influential observations12

using the IF of kernel PCA. Filzmoser et al. (2008) developed amethod for outlier identification in high dimensions. However,13

these methods are limited to a single dataset.14

Due to the properties of eigen-decomposition, kernel CCA is still a well used method for multiple sources data analysis15

and integration. Alam et al. (2010) have performed an empirical comparison and sensitivity analysis of robust linear CCA16

and kernel CCA, giving similar interpretation as kernel PCA (Alam et al., 2010, 2008, 2016; Huang et al., 2009). In addition,17

Romanazzi (1992) and Alam et al. (2016) have proposed the IF of CCA and kernel CCA but the IF of multiple kernel CCA has18

not been studied. All of these considerations motivate us to conduct studies on the IF of multiple kernel CCA to identify19

outliers in imaging genetics datasets.20

The contribution of this paper is four-fold. First, we address the IF of kernel mean element (kernel ME), kernel covariance21

operator (kernel CO), kernel cross-covariance operator (kernel CCO) and kernel CCA. Second, we theoretically derive the IF22

ofmultiple kernel CCA, which can be applied formore than two data sets. Third, we propose a visualizationmethod to detect23

influential observations of multiple datasets. We use the step-and-leaf display and distribution based methods to confirm24

the outliers or influential observations. Finally, the proposed method is applied to identify outliers in both synthesized and25

real imaging genetics data (e.g., SNP, fMRI, and DNA methylation), resulting in the detection of significant ROIs in the brain.26

The remainder of the paper is organized as follows. In the next section, we provide a brief review of kernel ME, kernel27

CO, kernel CCO, and its IFs. In Section 3, we discuss kernel CCA and multiple kernel CCA. After a brief review of kernel CCA28

along with its IF in Section 3.1, we derive the IF of multiple kernel CCA in Section 3.3. The utility of the proposed method29

is demonstrated by both simulated and real data analysis from an imaging genetics study in Section 4. In Section 5, we30

summarize our findings and give a perspective for future research. Details derivation can be found in the appendix.31

2. Preliminary32

Recently, nonparametric statistical inference approaches in reproducing kernel Hilbert space (RKHS) have been widely33

used. In these approaches, the distribution of a random variable is represented by the kernel ME, which is the mean element34

of the random feature vector defined by the kernel function, where the relation among variables is expressed by covariance35

and cross-covariance operators (Gretton et al., 2008; Fukumizu et al., 2008; Song et al., 2008; Kim and Scott, 2012; Gretton36

et al., 2012).37

LetX , Y , andX ×Y be the unique and joint sample spaces, respectively. Also let FX , FY and FXY be the probability measure38

on X , Y , and X ×Y , respectively. A symmetric bivariate function, k(·, ·) : X ×X → R, defined on a space is called a positive39

definite kernel if the Gram matrix (k(Xi, Xj))ij is positive semi-definite for all i, j ∈ {1, 2, . . . , n}, where X1, X2, . . . , Xn are40

the independent and identically distributed samples from the distribution FX . Aronszajn (1950) has shown that a positive41

definite kernel is associatedwith aHilbert space, called reproducingkernelHilbert space,HX . The featuremap is amapping42

Φ : X → HX and defined as Φ(·) = k(·, X), ∀ X ∈ X . The vector Φ(X) ∈ HX is called a feature vector. The inner product43

of two feature vectors can be defined as ⟨Φ(X),Φ(X ′)⟩HX = k(X, X ′) for all X, X ′
∈ X . This is called the kernel trick. By the44

reproducing property, f (X) = ⟨f (·), k(·, X)⟩HX , with f ∈ HX and the kernel trick, the kernel can evaluate the inner product45

of any two feature vectors efficiently without knowing an explicit form of either the feature map or the feature vector. In46

addition, the computational cost does not depend on the dimension of the original space after computing the Grammatrices47

(Fukumizu and Leng, 2014; Alam and Fukumizu, 2014). In the following sections, we address the basic notations of kernel48

ME, kernel CO and kernel CCO with their IFs.49

2.1. Kernel mean element50

Let kX be a measurable positive definite kernel on X with EX [
√
k(X, X)] < ∞. The kernel mean element, MX , of X on51

HX is an element of HX and is defined by the mean of the HX -valued random variable kX (·, X),52

MX (·) = EX [kX (·, X)].53

The kernelmean always existswith arbitrary probability under the assumption that the positive definite kernels are bounded54

and measurable. By the reproducing property, the kernel ME satisfies the following equality55

⟨MX , f ⟩HX = ⟨EX [kX (·, X)], f ⟩HX = EX ⟨kX (·, X), f ⟩HX = EX [f (X)],56

for all f ∈ HX .57
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