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h i g h l i g h t s

• We propose a method to conduct variable selection and identify local sparse effects.
• We provide a smooth estimate of the varying coefficient in the non-null subregions.
• We propose an efficient computational algorithm to solve the minimization problem.
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a b s t r a c t

Varying coefficient models have numerous applications in a wide scope of scientific areas.
Existingmethods in varying coefficientmodels havemainly focusedon estimation andvari-
able selection. Besides selecting relevant predictors and estimating their effects, identifying
the subregions in which varying coefficients are zero is important to deeply understand
the local sparse feature of the functional effects of significant predictors. In this article,
we propose a novel method to simultaneously conduct variable selection and identify the
local sparsity of significant predictors in the context of varying coefficient additive hazards
models. This method combines kernel estimation procedure and the idea of group penalty.
The asymptotic properties of the resulting estimators are established. Simulation studies
demonstrate that the proposed method can effectively select important predictors and
simultaneously identify the null regions of varying coefficients. An application to a nursing
home data set is presented.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Varying coefficient models have become popular statistical tools in many applications (Hastie and Tibshirani, 1993; 2

Hoover et al., 1998; Fan and Zhang, 1999; Huang et al., 2002; Sun and Wu, 2005). For example, in the cross-sectional data 3

analysis, some covariate effects may have nonlinear interactions with an exposure variable. In the longitudinal setting, the 4

effects of covariates on the outcome of interestmay change dynamically over time. Varying coefficientmodels provide a nice 5

graphical summary of temporal dynamics of covariate effects, and also can reveal deep insights into functional and complex 6

interactive effects of covariates, thereby greatly enhancing model capability and flexibility. 7

In the literature of survival analysis, extension from conventional survival models to their varying coefficient variants 8

is also common (Zucker and Karr, 1990; Murphy and Sen, 1991; Marzec and Marzec, 1997; Martinussen et al., 2002; Tian 9

et al., 2005; Chen and Tong, 2010; Chen et al., 2012). For example, Fan et al. (2006) considered a varying coefficient Cox
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model,wherein the covariate effects varywith an exposure variable. As an important alternative of Cox-typemodels, additive1

hazardsmodels and their varying coefficient variants have also attracted significant attention in the past years. For example,2

Lin and Ying (1994) introduced a semiparametric additive hazards model with constant covariate effects. McKeague and3

Sasieni (1994) proposed a partly Aalen’s model, which allows certain covariate effects to vary with time and the rest to be4

time-invariant. Yin et al. (2008) extended the additive hazardsmodel to a partially linear varying coefficientmodel, in which5

some covariate effects vary with an exposure variable and the others are constant. However, the existing works on varying6

coefficient survival models have mainly focused on estimation.7

In substantive study, identifying potential risk factors and selecting a plausible but parsimoniousmodel is also of scientific8

interest. Besides traditional variable selectionmethods, such as Akaike Information Criterion, Bayesian Information Criterion9

(BIC), and stepwise selection procedure, penalized variable selection methods have received much attention in the past10

decades. The commonly used penalized methods include Lasso (Tibshirani, 1996), bridge regression (Fu, 1998; Knight and11

Fu, 2000), SCAD (Fan and Li, 2001), adaptive Lasso (Zou, 2006), group lasso (Yuan and Lin, 2006) and MCP (Zhang, 2010).12

These variable selection procedures have also been extensively studied in the presence of censored data (Tibshirani, 1997;13

Fan and Li, 2002; Zhang and Lu, 2007; Liu and Zeng, 2013). In addition, some penalized variable selection methods have14

been developed for varying coefficient models (Fan et al., 2006; Wang et al., 2008; Wang and Xia, 2009; Yan and Huang,15

2012; Xiao et al., 2016). For example, Fan et al. (2006) extended the SCAD to the Cox model with coefficients varying with16

an exposure variable. Xiao et al. (2016) proposed a kernel group nonnegative garrote method for automatic model structure17

selection and coefficient estimation in the time-varying coefficient Cox model.18

Although the aforementioned methods are useful for selecting relevant variables, they cannot identify the local sparsity19

of relevant predictors. The local sparsity of a predictor means that the varying effect of the predictor is zero only over part20

of its domain. When local sparsity exists, detecting zero and nonzero subregions of varying effects can provide additional21

insights into a nice graphical summary of the predictors. Thus, it is desirable for a regression procedure to be capable of22

producing estimates that are exactly zero over certain regions and have varying effects over the remaining regions. For the23

functional linearmodel, James et al. (2009) proposed a so-called ‘‘FLiRTI’’ approach to determine zero andnonzero subregions24

of the coefficient function, Zhou et al. (2013) suggested a two-stage method to simultaneously identify the null region of the25

coefficient function and provided the estimation procedure on the non-null region, and Lin et al. (2017) developed one-stage26

procedure to simultaneously identify null subregions of the coefficient function and produced a smooth estimate in non-null27

subregions.28

In some situations, both variable selection and detection of local sparsity are important. However, the existing methods29

were developed solely on variable selection or on the detection of local sparsity. This limitation motivates us to consider30

a new method that is able to select significant predictors and identify their local sparsity simultaneously. Moreover, it is31

very desirable to develop a locally sparse estimator that can work with the prevalent kernel smoothing methods in a very32

natural way. In this article, we develop an effective method to eliminate unimportant variables and identify null subregions33

for important variables in the context of a varying coefficient additive hazards model. The proposed method combines the34

kernel smoothing technique and the group adaptive penalty into a single optimization objective function. Compared with35

the usual variable selection procedure, the group adaptive penalty allows us not only to perform variable selection, but also36

to detect the null subregions of varying coefficients. Moreover, by solving the optimization problem, we can identify the null37

subregions and provide a smooth estimate of the varying coefficient in the non-null subregions. Thus, the proposal inherits38

many nice statistical properties from both the kernel smooth estimation and nonconcave penalized methods. We study the39

asymptotic properties of the resulting estimators such as the sparsity and oracle property. In order to implement ourmethod40

in practice, we propose an efficient computational algorithm to solve the minimization problem involved in the estimation41

procedure. To our knowledge, this research is the first attempt to simultaneously accomplish the two important tasks. As we42

will demonstrate via simulation studies, the proposed method performs as well as the oracle one in terms of both variable43

selection and detection of local sparsity.44

The rest of this article is organized as follows. Section 2 describes the proposed model and estimation procedure, and45

the associated asymptotic properties are established as well. Section 3 discusses technical issues about tuning parameter46

selection and variance estimation. The empirical performance of the proposed method is demonstrated via simulation47

studies in Section 4. Section 5 presents an application to a nursing home data. Section 6 concludes the articlewith discussion.48

Proofs and technical details are provided in the Appendix.49

2. Methodology50

2.1. Notation and model51

Let T be the failure time and C be the censoring time. Define X = min(T , C), and ∆ = I(T ≤ C), where I(·) is the indicator52

function. Let Z(t) be the p × 1 vector of external time-dependent covariates (Kalbfleisch and Prentice, 2002), and V be an53

exposure variable allowed to be time dependent. Assume that T and C are independent given Z(·) and V . The observed data54

consist of n independent and identically distributed replicates of (X, ∆, Z(·), V ), denoted by {(Xi, ∆i, Zi(·), Vi), i = 1, . . . , n}.55

The varying coefficient additive hazards model specifies that, given Z(t) and V , the hazard function of T takes the form56

h(t|Z(t), V ) = h0(t, V ) + β(V )TZ(t), (1)57
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