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a b s t r a c t

Bayesian methods for flexible time-to-event models usually rely on the theory of Markov
chain Monte Carlo (MCMC) to sample from posterior distributions and perform statistical
inference. These techniques are often plagued by several potential issues such as high
posterior correlation between parameters, slow chain convergence and foremost a strong
computational cost. A novel methodology is proposed to overcome the inconvenient facets
intrinsic toMCMC sampling with themajor advantage that posterior distributions of latent
variables can rapidly be approximated with a high level of accuracy. This can be achieved
by exploiting the synergy between Laplace’s method for posterior approximations and
P-splines, a flexible tool for nonparametric modeling. Themethodology is developed in the
class of cure survival models, a useful extension of standard time-to-eventmodels where it
is assumed that an unknown proportion of unidentified (cured) units will never experience
the monitored event. An attractive feature of this new approach is that point estimators
and credible intervals can be straightforwardly constructed even for complex functionals
of latent model variables. The properties of the proposed methodology are evaluated
using simulations and illustrated on two real datasets. The fast computational speed and
accurate results suggest that the combination of P-splines and Laplace approximations
can be considered as a serious competitor of MCMC to make inference in semi-parametric
models, as illustrated on survival models with a cure fraction.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

There is a growing interest for cure rate models in survival analysis as witnessed by the number of recently published 2

papers on that topic in statistical journals. These models have gained in popularity as they intrinsically account for long- 3

term survivors that will never experience the event of interest even when followed-up for an extended time period. The 4

promotion time (cure) model introduced by Yakovlev et al. (1996) is motivated by cancer tumor kinetics, the biological 5

mechanism underlying the proliferation and growth of carcinogenic cells. In particular, letN ∼ Poisson
(
φ(x)

)
be the number 6

of carcinogenic cells affecting a given subjectwithmeanφ(x) = exp(β0+xTβ). To the ith cell is associated a latent event time 7

Ti ≥ 0 representing the duration necessary for the cell to grow to a detectable tumor mass. Latent event times {T1, . . . , TN} 8

are assumed to be independently and identically distributed with common cumulative distribution function F (t) and the 9

✩ R code is available as supplementary material in the electronic version of the paper.
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observed survival time is defined as T = min{T1, . . . , TN}. When a Cox proportional hazards model (Cox, 1972) is used to1

model theN conditional latent distributions F (ti|z) = 1−S0(ti)exp(z
T γ), i = 1, . . . ,N one can show that the resulting survival2

function of T is given by (Tsodikov, 1998; Chen et al., 1999)3

Sp(t|x, z) = exp
(
−φ(x)F (t|z)

)
4

= exp
(
− exp(β0 + xTβ)

(
1 − S0(t)exp(z

T γ))). (1)5

In this model, a subject is cured when N = 0, an event arising with a probability given by P(N = 0 |x, z) =6

limt→∞Sp(t|x, z) = exp(−φ(x)). Alternative specifications are proposed in the literature to model the distribution of latent7

event times F (ti), for example Ibrahim et al. (2001) propose a semi-parametric form for the latent distribution involving a8

smoothing parameter controlling the degree of parametricity in the right tail of the population survival function, while Zeng9

et al. (2006) introduce a semi-parametric class of cure models taking into account a subject-specific frailty. Model (1) can be10

estimated bymaximum likelihoodmethods in a frequentist setting (see Tsodikov, 2002, 2003). From a Bayesian perspective,11

Yin and Ibrahim (2005) assume a piecewise exponential model for the baseline survival function with a tradeoff between12

model flexibility and the number of partitions of the time axis. More recently, Bremhorst and Lambert (2016) use a large13

number of B-splines to specify the baseline hazard and, following Eilers and Marx (1996), counterbalance the flexibility of14

the model by using a roughness penalty based on finite differences of adjacent B-spline coefficients.15

The rather complex structure of the posterior distributions in the latter Bayesian frameworks requires the use of MCMC16

techniques. For such models, the MCMC toolbox is usually accompanied by a large computational burden and challenging17

convergence problems under the original parameterization. A crucial component explaining the inefficiency of rejection18

sampling techniques is a strong posterior correlation appearing firstly among latent variables and secondly between latent19

variables and hyperparameters of the model, thus having a global impact on convergence speed and autocorrelation.20

Integrated Nested Laplace Approximations (INLA) is a sampling-free Bayesian methodology recently introduced in the21

literature that allows to obtain marginal posteriors in the class of latent Gaussian models and has been recognized to be an22

interesting alternative to standardMCMCmethods. In this dimension, Rue et al. (2009) andMartino (2007) are the pioneering23

references showing how to perform approximate Bayesian inference in latent Gaussian models via Laplace approximations.24

While INLA has been shown to work well in a large variety of applications like stochastic volatility models (Martino25

et al., 2011a), generalized dynamic linear models Ruiz-Cárdenas et al. (2012) and spatio-temporal disease mapping models26

(Schrödle and Held, 2011), there seems to be little work related to survival analysis or penalized B-spline models. Among27

the contributions on the subject, we can cite Fong et al. (2010) who combine INLA and O’Sullivan splines in a nonparametric28

smoothing setting. Martino et al. (2011b) investigate the use of INLA with the R-INLA package (www.r-inla.org) by29

considering a Cox model where the baseline hazard has a parametric or semi-parametric specification. Also, Jiang et al.30

(2014) study the effect of environmental radiation on cancer by using a cure fraction mixture survival model with aWeibull31

distribution for event times.32

We investigate how Laplace approximations can be extended and combined with penalized B-splines in the context of33

a semi-parametric promotion time cure model. Bridging the gap between Laplace’s method and regression splines brings34

a twofold advantage. First, it provides a fast computational approach to approximate posterior distributions and second,35

the spline dimension allows for a flexible specification of the baseline distribution yielding smooth estimates of survival36

quantities. Another crucial point is that in contrast to the classic INLA approach which focuses mainly on posterior marginal37

univariate distributions, our methodology permits to compute reliable approximations to the posterior joint distributions38

of latent variables including regression parameters, with the implication that set estimators can be derived even for39

complicated functions of latent variables such as the baseline or conditional population survival functions.40

Accordingly, the end user will be endowed with a powerful and rapid tool for making inference in the promotion time41

curemodel. Furthermore, while the code design underlying INLA assumes a one-to-one connection between data points and42

a subset of the latent field, implying that the dimension of the latter grows with the sample size n, our modeling strategy43

choice is more efficient as it involves a latent field of a dimension unaffected by the number of observations. Hence, given44

that the number of B-splines is fixed (to a large value and counterbalanced by a roughness penalty) in the P-spline approach45

(Eilers and Marx, 2010), the latent field dimension grows only with the number of regressors in the model and not with n.46

This manuscript is organized as follows. In Section 2, the Laplace-P-spline promotion time cure model is defined and the47

gradient and Hessian of the log-likelihood are computed to obtain a Gaussian approximation of the conditional posterior48

distribution of the latent field. A strategy is proposed to explore the posterior distribution of the hyperparameter vector and49

the joint posterior of latent field elements are derived. The construction of credible intervals for the baseline and population50

survival functions is also addressed here. In Section 3, the merits of the proposedmethodology will be assessed by extensive51

simulations with different scenarios regarding the percentages of cured individuals and right censored subjects. Coverage52

properties of credible intervals will also be considered. In Section 4, we apply the model to two real datasets and Section 553

concludes with a discussion.54

2. Laplace-P-spline promotion time model55

2.1. Flexible modeling of the baseline hazard56

Following Rosenberg (1995), the log-hazard corresponding to the baseline survival function S0(t) in (1) is specified as a57

linear combination of cubic B-splines h0(t) = exp
(
θTb(t)

)
, where b(·) = (b1(·), . . . , bK (·))T is a cubic B-spline basis obtained58
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