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a b s t r a c t

Recent advances on overfitting Bayesian mixture models provide a solid and straightfor-
ward approach for inferring the underlying number of clusters and model parameters
in heterogeneous datasets. The applicability of such a framework in clustering corre-
lated high dimensional data is demonstrated. For this purpose an overfitting mixture of
factor analyzers is introduced, assuming that the number of factors is fixed. A Markov
chain Monte Carlo (MCMC) sampler combined with a prior parallel tempering scheme is
used to estimate the posterior distribution of model parameters. The optimal number of
factors is estimated using information criteria. Identifiability issues related to the label
switching problem are dealt by post-processing the simulatedMCMC sample by relabeling
algorithms. The method is benchmarked against state-of-the-art software for maximum
likelihood estimation of mixtures of factor analyzers using an extensive simulation study.
Finally, the applicability of the method is illustrated in publicly available data.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Factor Analysis (FA) is a popular statistical model that aims to explain correlations in a high-dimensional space by
dimension reduction. This is typically achieved by expressing the observed multivariate data as a linear combination of
a smaller set of hypothetical and uncorrelated variables known as factors. The factors are not observed, so they are treated
as missing data. The reader is referred to Kim and Mueller (1978) and Bartholomew et al. (2011) for an overview of factor
analysis models, estimation techniques and applications.

However, when the observed data is not homogeneous, the typical FA model will not adequately fit the data. In such
a case, a Mixture of Factor Analyzers (MFA) can be used in order to take into account the underlying heterogeneity.
Thus, MFA models jointly treat two inferential tasks: model-based density estimation for high dimensional data as well
as dimensionality reduction. Estimation of MFA models is straightforward by using the Expectation–Maximization (EM)
algorithm (Dempster et al., 1977; Ghahramani and Hinton, 1996; McLachlan and Peel, 2000; McLachlan et al., 2003, 2011).
The family of parsimonious Gaussian mixture models (PGMM) is introduced in McNicholas and Murphy (2008), McNicholas
et al. (2010) and McNicholas and Murphy (2010), which is based on Gaussian mixture models with parsimonious factor
analysis like covariance structures. Under a Bayesian setup, Fokoué and Titterington (2003) estimate the number of mixture
components and factors by simulating a continuous-time stochastic birth–death point process using a Birth–Death MCMC
algorithm (Stephens, 2000a). Their algorithm is shown to perform well in small to moderately scaled multivariate data.

Fully Bayesian approaches to estimate the number of components in amixturemodel include the Reversible jumpMCMC
(RJMCMC) (Green, 1995; Richardson and Green, 1997; Dellaportas and Papageorgiou, 2006; Papastamoulis and Iliopoulos,
2009), Birth–death MCMC (BDMCMC) (Stephens, 2000a) and allocation sampling (Nobile and Fearnside, 2007) algorithms.
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In recent years there is a growing progress on the usage of overfitted mixture models in Bayesian analysis (Rousseau and
Mengersen, 2011; van Havre et al., 2015). An overfitting mixture model consists of a number of components which is much
larger than its true (and unknown) value. Under a frequentist approach, overfitting mixture models is not a recommended
practice. In this case, the true parameter lies on the boundary of the parameter space and identifiability of the model is
violated due to the fact that some of the component weights can be equal to zero or some components may have equal
parameters. Consequently, standard asymptotic Maximum Likelihood theory does not apply in this case (Li et al., 1988).
Choosing informative prior distributions that bound the posterior away from unidentifiability sets can increase the stability
of the MCMC sampler, however these informative priors tend to force too many distinct components and the possibility of
reducing the overfitting mixture to the true model is lost (see section 4.2.2 in Frühwirth-Schnatter (2006)). Under suitable
prior assumptions introduced by Rousseau and Mengersen (2011), it has been shown that asymptotically the redundant
components will have zero posterior weight and force the posterior distribution to put all its mass in the sparsest way to
approximate the true density. Therefore, the inference on the number of mixture components can be based on the posterior
distribution of the ‘‘alive’’ components of the overfitted model, that is, the components which contain at least one allocated
observation.

The simplicity of this approach is in stark contrast with the fully Bayesian approach of treating the number of clusters as
a random variable. For example, in the RJMCMC algorithm the researcher has to design sophisticatedmove types that bridge
models with different number of clusters. On the other hand, the allocation sampler is only applicable to cases where the
model parameters can be analytically integrated out. Even in such cases though, the design of proper Metropolis–Hastings
moves on the space of latent allocation variables of the mixture model is required to obtain a reasonable mixing of the
simulated MCMC chain (see Nobile and Fearnside (2007); Papastamoulis and Rattray (2017)).

The contribution of this study is to utilize recent advances on overfitting mixture models (van Havre et al., 2015) to the
context of Bayesian MFA (Fokoué and Titterington, 2003). We use a Gibbs sampler (Geman and Geman, 1984; Gelfand and
Smith, 1990) which is embedded in a prior parallel tempering scheme in order to improve the mixing of the algorithm. In
addition, we explore the usage of information criteria for estimating the number of factors. After estimating the number of
clusters and factors, we perform inference on the chosen model by dealing with identifiability issues related to the label
switching problem (Papastamoulis, 2016). Our results indicate that overfitting Bayesian MFA models provide a simple and
efficient approach to estimate the number of clusters in correlated high-dimensional data.

The rest of the paper is organized as follows. Section 2.1 reviews the basics of FA models. Finite mixtures of FA models
are presented in Section 2.2 and a brief review of previous frequentist approaches is given in Section 2.3. The Bayesian
formulation is presented in Section 2.4. The overfitting MFA model is introduced in Section 2.5. Section 2.6 deals with
estimating the number of factors using information criteria. Section 2.7 presents the prior parallel tempering scheme which
is incorporated into the MCMC sampler. Identifiability issues related to the label switching phenomenon are discussed in
Section 2.8 and further details of the overall implementation are given in Section 2.9. Ourmethod is illustrated and compared
against the EM algorithm in Section 3 using a simulation study (Section 3.1) as well as three publicly available datasets
(Sections 3.2–3.4). The paper concludes in Section 4. Further technical details and simulation results are provided in the
Appendix.

2. Methodology

At first we introduce some conventional guidelines that will be followed in our notation throughout this paper, unless
explicitly stated otherwise.Wewill use bold face for vectors andmatrices. The notationαk will correspond to the kthmember
of a vector a. In addition, Ak will denote the kth member of a vector A whose elements are matrices. The (i, j) element of a
matrix Σ will be denoted by the corresponding lower case letter, that is, σij. The transpose matrix of Σ will be denoted as
ΣT . We will not differentiate the notation between random variables and their specific realizations. We use f (x|y) to denote
the probability mass or density function of x given y. For a discrete random variable z, the notation P(z = k) will be also used
to denote the probability of the event {z = k}. The p × p identity matrix is denoted as Ip, p ∈ N.

2.1. Factor analysis model

Let x = (x1, . . . , xn) denote a random sample of p dimensional observations with xi ∈ Rp; i = 1, . . . , n. We assume that
xi is expressed as a linear combination of a latent vector (factors) yi ∈ Rq

xi = µ + Λyi + εi. (1)

The unobserved random vector yi lies on a lower dimensional space, that is, q < p and it consists of uncorrelated features
yi1, . . . , yiq. In particular, we assume that

yi ∼ Nq(0, Iq), (2)

independent for i = 1, . . . , n and 0 denotes a vector of zeros. The p × q dimensional matrix Λ = (λrj) contains the factor
loadings, while the p-dimensional vector µ = (µ1, . . . , µp) contains the marginal mean of xi. For the error term εi assume
that

εi ∼ Np(0,Σ) (3)
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