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a b s t r a c t

Joint analysis of multivariate outcomes composed of mixed data types (continuous, count,
binary, survival, etc.) induces special complexity inmodel specification and analysis.When
the scientific question of interest involves a joint effect of covariate(s) of interest on the set
of outcome variables, specifying a full probability model may be infeasible, undesirably
complex, or computationally intractable. A flexible method to estimate and conduct infer-
ence on such joint effects is presented which accounts for correlation among the outcomes
without needing to explicitly specify their joint distribution. Simulation studies and an
analysis of health care data illustrate the approach and its operating characteristics vis-
à-vis other methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Multivariate outcomes arise naturally in a variety of data analysis contexts: in health studies with multiple indicators 2

of disease or wellness; in pharmacology, when various properties of a drug need to be controlled for safety, efficacy, 3

etc., or various biomarkers are profiled to form a multifarious description of cellular activity; in survey sampling where 4

multiple aspects of a topic or product are of inherent interest, and so on. Many subdomains of statistics address specific 5

types of multivariate or correlated outcomes, such as longitudinal data analysis which provides various tools for data 6

that may be identically distributed on the margins (up to covariate-dependent scale/location shifts) but not independent. 7

Many regression approaches assume, in some form, that the data were generated from a multivariate normal distribution 8

(e.g. linear mixed models and latent variable methods) or employ an approach such as estimating equations which model 9

the mean function and dependence parameters separately without attempting to specify a full probability model for the 10

data (generalized linear mixed models or GLMM). 11

Copulas provide another attractive approach to modeling the joint distribution of a variety of outcomes (Song, 2007), 12

though they are less straightforward to implement when some margins are not continuous. With discrete – or mixed 13

continuous and discrete –margins, subtle identifiability issues complicate model specification and introduce considerations 14

which may be overly technical for a data analyst (for a discussion see, e.g., Genest and Nešlehová, 2007). Although a 15

wide variety of copula models exist and have some degree of user-friendly implementation of the copula itself, accessible 16

implementation of such models for regression analysis remains relatively sparse. 17

For some common cases of mixed-type outcomes a number of models have been developed: with one continuous and 18

one binary outcome, for instance, various factorization or latent variable methods exist (Teixeira-Pinto and Harezlak, 2013), 19

although the ‘direction’ of factorization (specifying f (Y1, Y2) = f (Y1) · f (Y2|Y1) or f (Y1, Y2) = f (Y2) · f (Y1|Y2)) generally yields 20
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distinct model interpretations and results. Such models as appear in domain-specific applications, for example the genome-1

wide association study literature (Kwak et al., 2013), often make quite restrictive assumptions about the types of data2

involved. In this context, one inferential goal is a test of the effect of genetic information on disease-related phenotypes, but3

the need to specify a coherentmultivariate distribution for these outcomesmay induce considerable rigidity of assumptions.4

Despite such shortcomings, models for multivariate outcomes have the attractive feature of allowing hypothesis tests of5

the joint effect of covariate(s) of interest on the set of outcomes. Such a testmay be particularly useful in low-power settings,6

whether due to small n or inherently noisy data, or in cases where sets of outcomes form natural groupings (ex. groups of7

related biomarkers). While a joint model for outcomes may increase power for marginal tests of significance, the magnitude8

of the gain is often small or even nonexistent (Teixeira-Pinto and Normand, 2009; Teixeira-Pinto and Harezlak, 2013). In9

addition to fitting regression parameters, multivariatemodels often provide some information about the residual covariance10

of the outcomes. Although potentially useful, such information may be of limited application or even misleading due to11

(i) model mis-specification, which seems much more likely in the multivariate context, or (ii) use of ‘robust’ (sandwich)12

covariance estimators which are asymptotically consistent for the regression parameters (and linear combinations thereof)13

but do not presume a correct model for the correlation parameters. In any case, such correlation parameters are usually of14

secondary interest — indeed, they are often relegated to ‘nuisance’ status.15

This paper presents a relatively straightforward strategy for testing the joint effect of a covariate of interest on a16

multivariate vector of outcomes, or for testing more general linear combinations of regression parameters across different17

outcomes. The procedure outlined employs a so-called multiplier bootstrap method which accounts for the correlation18

between outcomes without needing to explicitly model it. So long as a regression model may be fit separately for each19

margin (and given some mild regularity conditions), the method provides valid hypothesis tests for a wide variety of joint20

hypotheses. This test is ‘parameterized’ by a norm, and different choices of norms affect the sensitivity of the test toward21

different types of alternative hypotheses. In particular, the relative sparsity or density of non-zero coefficients among the22

set of tested parameters corresponds in an intuitive way to the norm chosen in the bootstrap procedure.23

Since many extant models provide ways of effectively analyzing (i) multivariate, continuous data (copulas) or (ii)24

data which arise from the same family of marginal distributions but which are not independent (such as GLMM), the25

present model is geared toward instances of dependent and mixed-type data. Naturally, the method applies to the two26

aforementioned situations but might answer a less comprehensive set of statistical questions than other, more tailored27

models in those contexts.28

2. Methods29

2.1. Background30

The proposed procedure takes its cues from some methods developed in the high-dimensional data context. Consider31

the realm of genomics, where genetic information is measured from a (typically relatively small) sample of patients,32

animals, or cells. Sequencing technology allows collection of various measurements including quantitative trait loci, single33

nucleotide polymorphisms, RNA expression levels, knockout–induced pathway activitymodulation, etc. In all cases, a similar34

problem arises: the same model is fit at many locations (on many small data sets), and the resulting test statistics usually35

exhibit non-ignorable dependence, making ‘genome-wide’ or multiple-testing corrected cutoff regions difficult to calibrate.36

Earlier literature (ex. Rebai et al., 1994) focused on employing approximations to functions of such correlated test statistics37

(for example, their maximum); however, this approach was often model-specific and depended critically on simplifying38

distributional assumptions.39

To overcome such limitations, permutation and bootstrap approaches gained favor: for analysis of quantitative trait loci40

data, Zou et al. (2004) implement a bootstrap test for genome-wide statistical significance testing, employing standard41

normal perturbations of score information to estimate quantiles of a randomvariablewhich defines the rejection region. Diao42

and Vidyashankar (2013) modify this procedure by replacing the normal perturbations with Rademacher ones, and Diao et43

al. (2014) apply this so-called multiplier bootstrap procedure more generally in the context of p ≫ n linear regression44

problems. Therein, p covariates x ≡ [x1, . . . , xp]model a univariate outcome Y : E(Y |x) = x⊤β. In this setting, the covariance45

matrix of β is not estimable since, due to sample size constraints, X⊤X is not of rank p.46

Various methods exist to attain a modified, usable estimate of the covariance matrix, in particular via shrinkage of47

eigenvalues (Ledoit andWolf, 2012). In Kuelbs and Vidyashankar (2010), asymptotic theory for this application is developed48

and supplemented with some hypothesis testing examples wherein the supremum norm of a Gaussian process defines the49

rejection region for the global hypothesisH0 : β = 0when the dimension of β tends to∞ alongwith n. They use a bootstrap50

test which generates random vectors based on the shrunken covariance estimate – although theoretically promising, this51

procedure’s computational complexity scales quite poorly with p. The multiplier bootstrap procedure in Diao et al. (2014)52

modifies this test by using a Rademacher process to perturb the efficient scores, thereby generating a null distribution of53

the test statistic which reflects correlation among the parameters in β without needing to explicitly model said correlation.54

The authors demonstrate that this multiplier test may easily handle large p without imposing an excessive computational55

burden.56

The problem addressed here arises in a different data structure but encounters a similar problem: in the p ≫ n57

case, an estimate of the covariance matrix is straightforward in principle, but due to practical constraints (sample size),58
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