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a b s t r a c t

GaussianMarkov random fields are used in a large number of disciplines in machine vision
and spatial statistics. Themodels take advantage of sparsity inmatrices introduced through
the Markov assumptions, and all operations in inference and prediction use sparse linear
algebra operations that scale well with dimensionality. Yet, for very high-dimensional
models, exact computation of predictive variances of linear combinations of variables is
generally computationally prohibitive, and approximate methods (generally interpolation
or conditional simulation) are typically used instead. A set of conditions is established
under which the variances of linear combinations of random variables can be computed
exactly using the Takahashi recursions. The ensuing computational simplification has wide
applicability and may be used to enhance several software packages where model fitting
is seated in a maximum-likelihood framework. The resulting algorithm is ideal for use
in a variety of spatial statistical applications, including LatticeKrig modelling, statistical
downscaling, and fixed rank kriging. It can compute hundreds of thousands exact predictive
variances of linear combinations on a standard desktop with ease, even when large spatial
GMRF models are used.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Gaussian Markov random fields (GMRFs) play a pivotal role in various applications such as image analysis (Mardia,
1988), disease mapping (Lawson andMacNab, 2011), and atmospheric pollution modelling (Cameletti et al., 2013). They are
frequently seen as reasonable approximations to continuously-indexed Gaussian processes (Rue and Tjelmeland, 2002), and
are often preferred due to their favourable computational properties. Recent work on their ability to approximate Gaussian
processes typically used in geostatistical models (e.g., Lindgren et al., 2011; Nychka et al., 2015) has led to their widespread
use in the space–time analysis of data at scales that were inconceivable two decades ago (e.g., Zammit-Mangion et al., 2015).

Let η have a non-degenerate multivariate Gaussian distribution with precision matrix Q, and encode the pairwise
conditional dependence properties of η in the formof a graphGQ = {V, EQ }, whereV indexes the elements of η, and (i, j) ̸∈ EQ
exactly when ηi ⊥ ηj | {ηk : k ̸= i, j}, for i ̸= j. As is well-known (see, e.g., Rue and Held, 2005, Theorem 2.2), this graph
defines the zeros in Q, for which Qij = 0 if and only if i ̸∼ j in GQ , for i ̸= j. As the distribution of η is non-degenerate,
the positivity condition of the Hammersley–Clifford Theorem holds (Besag, 1974), and GQ also encodes the local Markov
property and the global Markov property of η.

✩ Reproducible code available as Supplementary Material (see Appendix A).
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In this article we consider the case when the GMRF is used to encode prior belief on the quantity η through Q, that may
itself be a function of a small number of parameters that need to be estimated. We further assume that η is not directly
observed; instead, a linear combination of η, Bη, is observed in the presence of noise. Denote the data vector as Z. The
two-level hierarchical model we consider is

Z = Bη + ε,

η ∼ Gau(Xβ,Q−1),

where X are covariates, β are regression coefficients, and ε is Gaussian, uncorrelated, measurement error with diagonal
precision matrix R.

It is an immediate result that if X,B,Q,R and β are known, then the precision matrix of η | Z is P := BTRB + Q. It
is also well known that var(ηi | Z) can be easily found from the sparse Cholesky factor of P using the Takahashi equations,
without computing S := P−1 directly (Takahashi et al., 1973; Erisman and Tinney, 1975; Rue andMartino, 2007). Frequently,
however, we wish to compute prediction variances of linear combinations of η, for example over sub-groups of variables, or
over regions in a spatial domain in what is sometimes referred to as the change of support problem (Wikle and Berliner,
2005). This computation is always needed in theubiquitous casewhen the spatial field ismodelled as a sumof basis functions,
and where a GMRF prior is placed on the basis-function coefficients.

This article investigates the use of sparse linear algebra methods for the computation of the marginal variances of Aη | Z,
that is, d := diag(ASAT ), when A is nonnegative and when P is such that its Cholesky factor can be computed. Specifically,
it establishes the conditions on A under which d = diag(AS̃AT ), where S̃ is a sparse subset of S containing a sparsity pattern
that is in general identical to that of the Cholesky factor of P, also a by-product of the Takahashi equations. We find that in
several situations of practical importance, this computation simplification facilitates the evaluation of conditional variances
over linear combinations where direct computation is only possible in a massively parallel computing environment, and
where conditional simulation, while feasible, is inaccurate when the number of simulations is limited to a reasonable value.

Sparse inverse subsets are frequently used to facilitate computation in estimation frameworks (e.g., Gilmour et al., 1995;
Kiiveri and De Hoog, 2012; Cseke et al., 2016). They are particularly useful for computing trace operations appearing in
estimating equations of the form dT1 = tr(SATA). Bolin et al. (2009) noted that if A = B then S̃ necessarily contains the
required elements to compute the trace, and thus replaced S with S̃ when computing this trace operation in the M-step
of an expectation–maximisation algorithm. Vanhatalo et al. (2010) solved the related problem of computing tr(SD) where
D has the same sparsity pattern as S−1, by replacing S with S̃. In a similar vein, Grigorievskiy et al. (2016) computed the
block-diagonal inverse subset of S to find the trace when both S−1 and D are block tridiagonal. In this article we instead
focus on the computation of all of d, which in a spatial context are the prediction error variances at different levels of spatial
aggregation (as determined by A).

Ourmain result is presented in Section 2while a complexity analysis is given in Section 3. In Section 4we then develop the
framework required for applying this result in a spatial-analysis setting, anddemonstrate its use in several case studies. These
studies consider conditional-autoregressive models, LatticeKrig models, statistical downscaling, and spatial-random
effects models. Section 5 concludes with a brief mention of other approaches currently being investigated for when the
sparse Cholesky factor is too large to compute.

2. Main result

Let A and B be nonnegative matrices, and let Q and R be positive definite symmetric matrices, where the dimensions of
all matrices are implicit in what follows. Define P := BTRB+Q; hence P is positive definite even if B is not full rank. Further,
define S := P−1. Our objective is to compute the vector d := diag(ASAT ). To summarise,

P := BTRB + Q, (1a)

S := P−1, (1b)

d := diag(ASAT ). (1c)

This section presents a theorem relating d to the sparsity structure of P and A.
The following simple lemma establishes a necessary and sufficient condition for d to be invariant to any specified element

of S, in terms of the elements of A.

Lemma 2.1. The vector d is invariant to Sjk if and only if [ATA]jk = 0.

Proof. The ith element of d is

di =

∑
j

∑
k

AijSjkAik =

∑
j

∑
k

(AijAik)Sjk.

Hence di is invariant to Sjk if and only if AijAik = 0. Therefore the entire vector d is invariant to Sjk if and only if AijAik = 0 for
all i, or, because A is nonnegative, [ATA]jk = 0. □
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