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h i g h l i g h t s

• The applicability of Bayesian approximation error methods to chaotic state evolution problems has not been investigated previously.
• We have applied Bayesian approximation error approach to the state and parameter estimation problems induced by the Kuramoto–

Sivashinsky (KS), which has also been referred to as the ‘‘simplest’’ chaotic PDE.
• The results suggest that the nonstationary BAE is a potentially feasible approach for reduced order chaotic models. The accuracy of the

state estimates is comparable to that of respective non-reduced order model.
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a b s t r a c t

Model reduction, parameter uncertainties and state estimation in spatiotemporal problems
induced by chaotic partial differential equations is considered. The model reduction and
parameter uncertainties induce a specific structure for the state noise process, and also
modify the observation noise model. The nonstationary Bayesian approximation error
approach (BAE) is employed to construct the state evolution and observation models.
Earlier results have shown that the effects of severe model reduction and parameter
uncertainties canbehandledwith thenonstationary BAE. The applicability of BAE to chaotic
state evolution problems has not been investigated previously. The Kuramoto–Sivashinsky
equation is considered with noisy measurements and, in addition, the related state space
model identification problem is also considered. The results suggest that the nonstationary
BAE is a potentially feasible approach for reduced order chaotic models and, when feasible,
the accuracy of the state estimates is comparable to that of respective non-reduced order
model.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

A large class of state estimation problems is induced by partial differential equations (PDE) that govern the underlying 2

physical phenomena. Examples of such phenomena include (heat) transfer, chemical reaction kinetics, structural vibrations 3
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and wave propagation in general. The tasks, on the other hand, include state estimation (of variables that are not directly1

observed), state space identification (estimation of time-invariant parameters of the PDE’s) and control.2

The standard approach to derive the state evolution model is to use a semi-discrete scheme to turn the PDE’s into (often3

large) systems of ODE’s and equip the discretized models with a more or less trivial state noise model. Typically, the model4

for the state noise process is a mutually independent identically distributed noise model, that is, the covariance is modelled5

as a scaled identity matrix. As long as there are no model uncertainties (e.g. unknown/inaccurate variables that are not6

modelled as unknown) and the discretization is relatively accurate such that discretization errors are negligible (compared7

to the inherent state and observation noise processes), such trivial state noisemodelsmay yield feasible state estimates, that8

is, the true state and parameters are supported by the (posterior) distribution estimate. The relatively accurate models are,9

however, often computationally prohibitively complex, and reduced order models have to be used.10

It has been found that, under significant model reduction and model uncertainties, trivial state noise models can give11

infeasible or significantlymisleading estimates for the state and the statemodel parameters. The central problem is then how12

to model the state noise process such that the noise processes represents the error due to themodel reduction. The Bayesian13

approximation error (BAE) approach was introduced in Kaipio and Somersalo (2005, 2007) to provide a systematic method14

to construct statistical structure for such noise processes. The approach was originally applied to handle discretization15

errors in problems such as electrical impedance tomography and deconvolution. Lately, BAE has also been extended to16

deal with more general modelling errors such as treating anisotropic scattering in optical tomography (Heino et al., 2005),17

unknown boundary data on computational truncation boundaries (Lehikoinen et al., 2007), unknown nuisance parameters18

(Kolehmainen et al., 2011; Nissinen et al., 2009; Lehikoinen et al., 2010; Huttunen et al., 2014), and the approximation of the19

radiative transfer model with a simpler diffusion model in optical tomography (Tarvainen et al., 2010).20

TheBAE approachhas been extended to nonstationary state estimation and identification problems (Huttunen andKaipio,21

2007b, a; Huttunen et al., 2010). It was shown that the nonstationary BAE approach is capable of yielding feasible estimates.22

In all of the studies, state evolution models were, however, non-chaotic.23

In the context of chaotic state evolution models, the state estimation approach and different nonlinear extensions of24

Kalman filter (Kalman, 1960; Adams and Fournier, 2003) have been successfully applied to several types of chaotic problems.25

For example, the ensemble Kalman filter (EnKF) (Evensen, 1994) was applied to estimate the parameters in Lorenz model26

in Annan and Hargreaves (2004) and several filtering approaches for turbulent chaotic systems were considered in Majda27

and Harlim (2012). The local ensemble transform Kalman filter (a version of EnKF) was applied to spatiotemporally chaotic28

Rayleigh–Bénard convection in Cornick et al. (2009). For Kalman filter algorithms for determining the optimal closure29

parameters in climate models, see for example Annan et al. (2005) or Hakkarainen et al. (2012). Furthermore, if the state30

variable is still a very high dimensional one, such as in weather prediction, 4DVAR type approaches (see e.g. Fisher and31

Andersson, 2001; Rabier et al., 2000; Dimet and Talagrand, 1986) are conventionally employed.32

There are also attempts to take care ofmodel and approximation errors caused by themodel reduction in data assimilation33

problems. For example, Janjic and Cohn (2006) considers errors due to unresolved scales (features that cannot be represented34

using the low-dimensional state) caused bymodel reduction in atmospheric data assimilation problems.Model errors caused35

by approximation of fast (often chaotic) components in climatemodels are considered, for example, inMitchell andGottwald36

(2012), Gottwald and Harlim (2013) and Berry and Harlim (2014). However, all of these consider specific model reduction37

related to ordinary differential equations, that is, they do not model the spatiotemporal (covariance) structure of the related38

PDE’s. Themain advantage of BAE is that it is a systematic approach to compute a (normal)model for themean and covariance39

of the state noise process. We note, in particular, that the mean of the state noise process is generally non-zero, in contrast40

to the conventional assumptions of the state noise process.41

Our aim is to give a preliminary assessment of the feasibility of the BAE approach to chaotic problems. In particular, we42

study the state and parameter estimation problems induced by the Kuramoto–Sivashinsky (KS) equationwhich has also been43

referred to as the ‘‘simplest’’ chaotic PDE (Brummitt and Sprott, 2009). We apply the BAE approach proposed in Huttunen et44

al. (2010) to the state estimation and identification problems related to the KS equation. The approach is here used to handle45

errors due to model reduction and misspecification of model parameters, which are common in data assimilation problems46

(Cane et al., 1995; Dee, 1991; Voutilainen et al., 2007). The BAE approach to state estimation and identification problems47

leads to a modification of (extended) Kalman filter.48

The rest of the paper is organized as follows. In Section 2, we formulate the state estimation and state space model iden-49

tification for the Kuramoto–Sivashinsky equation. In Section 3, we give a brief review of state estimation, extended Kalman50

filter (EKF) and the nonstationary Bayesian approximation error approach. Section 4 discusses numerical experiments and51

a discussion is given in Section 5.52

2. Kuramoto–Sivashinsky equation: the state estimation and identification problems53

We consider the Kuramoto–Sivashinsky (KS) equation. The KS equation was first developed to model waves in the54

Belousov–Zhabotinsky reactions (Kuramoto and Tsuzuki, 1976). In addition, the KS equation has been applied, for example,55

to model instabilities of the plane front of a laminar flame (Sivashinsky, 1977, 1980), and to flows of thin liquid films56

(Sivashinsky and Michelson, 1980; Chang, 1986; Chen and Chang, 1986; Shlang and Sivashinsky, 1982). The instabilities57

of the KS equation have also been extensively studied analytically and numerically (Kudryashov, 1990; Kevrekidis et al.,58

1990; Papageorgiou and Smyrlis, 1991; Smyrlis and Y, 1996).59
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