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a b s t r a c t

Sparsity in features presents a big technical challenge to existing clustering methods for
categorical data. Hierarchical Bayesian Bernoulli mixture model (HBBMM) incorporates
constrained empirical Bayes priors for model parameters, so the resulting Expectation
Maximization (EM) algorithm of estimator searching is confined in a proper region. The
EM algorithm enables to obtain the maximum a posterior (MAP) estimation, in which
cluster labels are simultaneously assigned. Three criteria are proposed to identify defining
features of individual clusters, leading to understanding of the underlying data structures.
Information basedmodel selection criterion is applied to determine the number of clusters.
Estimation consistency and performance of model selection criteria are investigated. Two
real-world sparse categorical datasets are analyzed with the proposed method.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Cluster analysis plays an important role in exploring data structure inmany applied fields.Many existing algorithms focus
on clustering continuous or numeric data, including K -means (Hochbaum and Shmoys, 1985), metrics-based hierarchical
clustering schemes (Johnson, 1967; Murtagh and Contreras, 2012) and spectral clustering method such as Ng et al. (2002),
Krzakala et al. (2013) and Lei et al. (2015). However, these methods cannot be directly applied to categorical data whose
domain values are discrete with no defined ordering. As a result, some clustering algorithms have been proposed to deal
with categorical data. K -modes algorithm is a modified version of K -means for clustering categorical data with two basic
extensions proposed separately by Chaturvedi et al. (2001) andHuang (1998). In hierarchical clustering schemes, newmetric
spaces are proposed for categorical data (Zhang et al., 2006; Iam-On et al., 2012). Labiod and Nadif (2011) and David and
Averbuch (2012) develop spectral-based methods for clustering categorical data. Population based methods take a certain
distribution assumption for the data. One of popular population based methods is finite mixture model (McLachlan and
Peel, 2004), which represents heterogeneity in a finite number of latent classes (Loh et al., 2015; Moser et al., 2015). One
extension of themixturemodel is to introduce a prior distribution to themixing proportions (Rasmussen, 1999;Medvedovic
and Sivaganesan, 2002; Yerebakan et al., 2014; Miller and Harrison, 2017). EM algorithm, Monte Carlo Markov Chain
(MCMC) and Variational Bayes (VB) are widely applied to estimate the parameters of mixture models (White and Murphy,
2014a). Cheeseman et al. (1993) propose the so-called AutoClass algorithm that relaxes the distributional assumption of the
mixture model. Many researchers (Pizzuti and Talia, 2003; McLachlan and Krishnan, 2007; Achcar et al., 2009) extend this
method to various applications. See Aggarwal and Reddy (2013) for an overview of various clustering techniques.

Recently, many big data projects generate volumions of sparse datasets in that identification of sub-populations is of
primary interest. Clustering methods are proposed to deal with the sparsity in data clustering. For example, Dhillon and
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Modha (2001) propose a sphericalK -means algorithm to cluster high-dimensional and sparse text documents; Elhamifar and
Vidal (2009), Elhamifar and Vidal (2011) and Wang and Xu (2016) propose a subspace clustering algorithm for geometrical
sparse embedded data. Chen et al. (2012) propose a clustering algorithm for sparse unweighted graphs based on intra-
clusters density and inter-clusters density. Krzakala et al. (2013) present a spectral algorithm to track a nonbacktracking
walk on directed edges of a graph to cluster sparse networks. Azizyan et al. (2015) apply a mixture of two non-spherical
Gaussian distributions to cluster high-dimensional continuous data. Zhang and Lu (2016) propose a two-step optimization
strategy to cluster large-scale sparse continuous data. Arias-Castro and Pu (2017) focus on clustering of sparse continuous
data with many noise features. Floriello and Vitelli (2017) consider the development of clustering algorithm for functional
data while jointly selecting most relevant features. Dimensionality reduction methods, such as ZIFA (Pierson and Yau, 2015)
and t-SNE (van derMaaten andHinton, 2008), cluster text and gene sequencing data by embedding the datamatrix (Macosko
et al., 2015; Grün et al., 2015).

Most of the above-mentionedmethods are developed for sparse but relatively informative data such as sparse continuous
data, sparse gene data, sparse text data, geometrical sparse embedded data, sparse graphic data and sparse functional data.
However, being pervasive in practice, sparse categorical data with binary features challenges these existing methods, since
information sparsity and lack of numerical granularity violate some of the assumptions used by these algorithms. This
motivates us to develop a new clustering algorithm for sparse categorical data to address the technical needs of performing
cluster analysis of, for example, the following two real-world datasets.

The first motivating dataset, CNAE-9 (Ciarelli and Oliveira, 2009), downloaded from the UCI Repository, contains 1080
documents of free text business descriptions of Brazilian companies, which are divided into 9 categories by experts. The
documents have gone through pre-processing after which each document is represented by a vector of word frequencies.
Since the number ofwords is very largewhereas the frequency of eachword’s appearance in each document is small, features
in the dataset are highly sparse. Actually, over 99% entries of the data matrix are filled with zeros, which severely challenges
any existing clustering algorithms.

The secondmotivating example pertains to a search enginemarketing (SEM) data analysis. SEM, by its definition, is a form
of internet marketing practice, throughwhich companies promote their products to potential customers based on keywords
people searchwith search engines. The logic behind thismarketing strategy is that users’ search behaviors couldmore or less
reveal their interest in a particular product. This strategy has beenwidely used bymany search engine companies. However,
one challenge in SEM is that both the number of ads-seekers and the total number of keywords searches are huge, while
frequencies of keyword hits are extremely low, making this dataset exhibits ultra sparseness. Having no specific techniques
to handle such excessively zero-inflated features, many clustering methods lose analytic power in SEM data analysis.

To develop a clustering algorithm that overcomes the aforementioned technical difficulties, we propose a hierarchical
Bayesian Bernoulli mixture model (HBBMM). Due to the fact that attributes with extremely low frequencies of appearance
are routinely eliminated in a pre-processing step, we attempt to introduce certain prior information to account for such
attributes with limited effects. This idea may be formulated by a constrained empirical Bayesian estimation in the context of
EM algorithm. The use of constraints allows us to cluster sparse binary data efficiently. A critical issue in the cluster analysis
is how to choose the number of clusters, or equivalently, the number of mixture components. We explore some model
selection criteria and study their asymptotic properties. Identification of important attributes specific to individual clusters
is important in clustering applications. Thus, we propose using Bayes factor to detect defining features of individual clusters.

The rest of this paper is organized as follows. We present the HBBMM and associated assumptions in Section 2. In
Section 3, we propose a Bayes factor and three model selection criteria to identify defining features of individual clusters.
Section 4 discusses asymptotic properties of the maximum a posterior (MAP) estimator and the selection consistency
of Bayesian Information Criteria (BIC) and Hannan Quinn information criterion (HQC). Section 5 illustrates extensive
simulations to evaluate the performance of the proposed clustering method in four aspects: the accuracy of parameter
estimation, the accuracy of clustering, the performance of model selection and the performance of the Bayes factor in
identifying defining features. Two real datasets are analyzed with the proposed algorithm in Section 6. Conclusions and
discussions are included in Section 7.

2. Clustering algorithm

2.1. Assumption and notation

Let 1 indicate hit or presence of a binary attribute and 0 otherwise. Let Xi, i = 1, . . . , n be d-dimensional random vectors
identically and independently drawn from a population with K clusters of the following Bernoulli mixture distribution:

p(Xi | µ, π) =

K∑
k=1

πkP(Xi | µk),

where Xi = (Xi1, . . . , Xid) ∈ Rd, i = 1, . . . , n, (µk1, . . . , µkd)T = µk ∈ Rd, µ = (µT
1, . . . ,µ

T
K )

T , P(Xi | µk) =∏d
ℓ=1µ

Xiℓ
kℓ (1 − µkℓ)1−Xiℓ , πk are the mixture proportions, π = (π1, . . . , πK )T and

∑K
k=1πk = 1. Denote X = (XT

1, . . . ,X
T
n )

T .
For the model specification, we assume the following prior distribution for the parameters of the Bernoulli distributions in
each component. For k = 1, 2, . . . , K and ℓ = 1, 2, . . . , d, µkℓ are independent Beta(α, β) variables. Since we usually do not



Download English Version:

https://daneshyari.com/en/article/6868722

Download Persian Version:

https://daneshyari.com/article/6868722

Daneshyari.com

https://daneshyari.com/en/article/6868722
https://daneshyari.com/article/6868722
https://daneshyari.com

