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a b s t r a c t

A new varying coefficient model that relates functional response to functional predictors
is proposed and studied. The model accommodates the influence of the functional pre-
dictors on the time-varying coefficient functions. A powerful kernel smoothing technique
is developed for estimating the model with longitudinal observations of the functional
response and predictors. The method involves a backfitting iteration that is based on
alternating conditional expectation. The convergence of the algorithm is established and
the asymptotic distribution of the coefficient function estimators is derived. It is shown
that the method works well for finite sample sizes via simulation studies. The proposed
model and method are also applied to analyzing an air quality dataset.
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1. Introduction 1

There has been a vast amount of work on varying coefficient models. The readers are referred to Park et al. (2015) for a 2

review of the earlier studies on the topic. Varying coefficient models are particularly useful in longitudinal analysis, where 3

one is typically interested in investigating how the effect of predictors Xj on a response Y changes over time. The simplest 4

functional regression model for this purpose is 5

Y (t) = β1(t)X1(t) + · · · + βd(t)Xd(t) + ϵ(t), (1.1) 6

where βj are unknown coefficient functions and ϵ is a mean zero stochastic process. The model (1.1) is a direct extension of 7

the classical linear model to the case of functional response and predictors. It has been studied by Hoover et al. (1998), Wu 8

et al. (1998, 2000);Wu and Yu (2002), Huang et al. (2004), Şentürk andMüller (2008), Wang et al. (2008) and Noh and Park 9

(2010), among others. 10

In the model (1.1) the coefficient functions βj depend only on time t . This might be restrictive. The coefficient functions 11

may change with the value of other functional predictors, say Zj, 1 ≤ j ≤ d. In this paper, we consider a new varying 12

coefficient model that accommodates the latter situation. Specifically, we study the estimation of the model 13

Y (t) = β1(t, Z1(t))X1(t) + · · · + βd(t, Zd(t))Xd(t) + ϵ(t), (1.2) 14

where ϵ is a stochastic process such that E(ϵ|X1, Z1, . . . , Xd, Zd) = 0. The model (1.2) is a functional version of the varying 15

coefficient model for cross-sectional data, 16

Y = β1(Z1)X1 + · · · + βd(Zd)Xd + ϵ, (1.3) 17
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which was proposed by Hastie and Tibshirani (1993) and studied by Yang et al. (2006) and Lee et al. (2012a). The1

generalization is in the same spirit as that of the classical linear model to its functional version (1.1). Our model (1.2) adds2

possible dynamic features to the coefficients βj in the simpler model3

Y (t) = β1(Z1(t))X1(t) + · · · + βd(Zd(t))Xd(t) + ϵ(t). (1.4)4

Note that in the latter model (1.4) the coefficients βj accommodate the effects of time t only through the values of the5

predictors Zj.6

To the best of our knowledge, the estimation of the model (1.2) has not been studied before. Since the models (1.1) and7

(1.4) are submodels of (1.2), the estimators of βj under the model (1.2) may be used for checking the validity of the models8

(1.1) and (1.4). Unlike the models (1.3) and (1.4) the coefficients βj in the model (1.2) have a common component, time9

t , that affects their values, which brings about an additional complication in the estimation of the model. The problem of10

estimating the model (1.2) does not fit into the framework of estimating the additive model as in Mammen et al. (1999) or11

in its functional extension12

Y (t) = β1(t, Z1(t)) + · · · + βd(t, Zd(t)) + ϵ(t) (1.5)13

studied by Zhang et al. (2013). Apparently, βj in our model (1.2) are not additive components of the regression function as14

in (1.5). The model (1.2) takes into account nonlinear interaction effects between the two predictor groups, which is not the15

case with the model (1.5).16

To mention a few other extensions of the linear model (1.1) for longitudinal data, Sun and Wu (2005) considered a17

semiparametric extension, and Şentürk andMüller (2010) studied amodel where X(t) is replaced by its history in a window18

[t − δ, t] in the form of
∫ δ

0 γ (u)X(t − u) du for some unknown function γ . Zhang and Wang (2015) introduced a varying19

coefficient model for time-invariant predictors, say Zj, that replaces Xj(t) in (1.1) by nonparametric functions of Zj. As for a20

related work on the additive model (1.5), Ma and Zhu (2016) studied a different kind of additive models for functional data21

where the effects of a predictor process at different time points are integrated continuously across the time domain.22

In this paper we present a powerful kernel smoothing technique that estimates the coefficient functions βj in the model23

(1.2). Our estimators ofβj(t, z) are smooth in both directions, t and z. Themethod is to solve a systemof backfitting equations24

that results from alternating conditional expectation. We propose an iteration scheme to get the estimators of βj as the25

solution of the system of backfitting equations. We prove that the iteration converges to the solution in an L2 sense for26

the direction z along the direction t . We also derive the asymptotic distributions of the estimators of βj, and show that the27

estimator of βj, for each j, has the same asymptotic distribution of the oracle estimator that utilizes the knowledge of all28

other coefficients βk for k ̸= j. We present a simulation result that confirms the validity of the proposed method in finite29

sample sizes, and also illustrate the method through an air quality dataset.30

2. Methodology31

We study the estimation of the model (1.2) based on a longitudinal dataset for the response and predictor processes32

observed intermittently at discrete time points. We consider the case where the time points are allowed to be different for33

different subjects but are independent random variables governed by an unknown common distribution. In this longitudinal34

setting the observed response and predictors admit the following model35

Y (T ) = β1(T , Z1(T ))X1(T ) + · · · + βd(T , Zd(T ))Xd(T ) + ϵ(T ), (2.1)36

where T denotes the random variable that represents the independent time points where the processes X ≡ (X1, . . . , Xd)⊤,37

Z ≡ (Z1, . . . , Zd)⊤ and Y are observed.38

Our proposedmethod of estimatingβj in (1.2) is based on the local linear smoothing technique and alternating conditional39

expectation. To motivate the method, consider the univariate regression problem of estimating m(u) = E(V |U = u) for the40

pair of a predictor U and a response V . The standard kernel estimator of E(V |U = u) takes the form
∑n

i=1wi(u)Vi with the41

‘local’ weights wi(u) ≥ 0 determined by a baseline kernel function K in such a way that42

wi(u) =

(
n−1

n∑
i=1

Kh(u,Ui)

)−1

n−1Kh(u,Ui), (2.2)43

where typically Kh(u,Ui) = h−1K ((u−Ui)/h) and h is the bandwidth. The local linear estimator ofm(u) is defined along with44

an estimator of its derivative m′(u). The estimator of (m(u),m′(u)) is usually defined in the literature as the minimizer of45 ∑n
i=1(Vi −m(u)−m′(u)(Ui − u))2Kh(u,Ui). But, we observe that it can be also defined as the solution of an empirical version46

of the following equation:47

E
((

1
U − u

)
V
⏐⏐⏐⏐U = u

)
= E

((
1

U − u

)
(1,U − u)

⏐⏐⏐⏐U = u
)(

m(u)
m′(u)

)
. (2.3)48
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