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a b s t r a c t

A model-based co-clustering algorithm for ordinal data is presented. This algorithm relies
on the latent blockmodel embedding a probability distribution specific to ordinal data (the
so-called BOS or Binary Ordinal Search distribution). Model inference relies on a Stochastic
EM algorithm coupled with a Gibbs sampler, and the ICL-BIC criterion is used for selecting
the number of co-clusters (or blocks). The main advantage of this ordinal dedicated co-
clustering model is its parsimony, the interpretability of the co-cluster parameters (mode,
precision) and the possibility to take into account missing data. Numerical experiments
on simulated data show the efficiency of the inference strategy, and real data analyses
illustrate the interest of the proposed procedure.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Historically, clustering algorithms are used to explore data and to provide a simplified representation of data with a small 2

number of homogeneous groups of individuals (i.e. clusters).With the big data phenomenon, the number of features becomes 3

itself larger and larger, and traditional clustering methods are no more sufficient to explore such datasets. Indeed, the 4

interpretation of a cluster of individuals using for instance a representative of this cluster (mean,mode, . . . ) is unfeasible since 5

this representative is itself described by a very large number of features. Consequently, there is also a need to summarize 6

the features by grouping them together into clusters. 7

Two approaches exist: bi-clustering and co-clustering. On the one hand, bi-clustering aims to identify blocks (or bi- 8

clusters) defined as a subset of observations described by a subset of variables. These subsets can overlap. On the other 9

hand, co-clustering aims to define both a partition of the observations and of the variables, and the blocks (or co-clusters) 10

are obtained by crossing both partitions. The main differences are that blocks can overlap in bi-clustering and not in co- 11

clustering, and moreover all features and observations have to belong to a block in co-clustering whereas not necessarily in 12

bi-clustering. Fig. 1 illustrates the differences between both approaches. This work focuses on the co-clustering problem as 13

a natural extension of traditional partition clustering. 14

Co-clustering algorithms have been introduced to provide a solution by gathering into homogeneous groups both the 15

observations and the features. Thus, the large data matrix can be summarized by a reduced number of blocks of data (or co- 16

clusters). If the earliest (and most cited) methods are probably due to Hartigan (1972, 1975), the model-based approaches 17

have recently proven their efficiency either for continuous, binary, count or contingency data (Govaert and Nadif, 2013; 18

Pledger and Arnold, 2014). 19

This work focuses on particular type of categorical data, ordinal data, occurring when the categories are ordered (Agresti, 20

2010). Ordinality is a characteristic of themeaning ofmeasurements (Stevens, 1946), and distinct levels of an ordinal variable 21
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Fig. 1. Co-clustering versus bi-clustering.

differ in degree of dissimilarity more than in quality (Agresti, 2010). Such data are very frequent in practice, as for instance1

in marketing studies where people are asked through questionnaires to evaluate some products or services on an ordinal2

scale (Dillon et al., 1994). Another example can be found in medicine, when patients are asked to evaluate their quality of3

life on a Likert scale (see for instance Cousson-Gélie(2000)), or in vegetation sciences with the Braun-Blanquet scale (Podani,4

2006).5

However, contrary to nominal categorical data, studied for instance in Celeux and Govaert (2015), ordinal data have6

received less attention from a clustering point of view, and then, in face of such data, the practitioners often transform them7

into either quantitative data (associating an arbitrary number to each category, see Kaufman and Rousseeuw (1990) or Lewis8

et al. (2003) for instance) or into nominal data (ignoring the order information, see the Latent GOLD software (Vermunt and9

Magidson, 2005)) in order to ‘‘recycle’’ easily related distributions. In order to avoid such extreme choices, some recentworks10

have contributed to define clustering algorithms specific for ordinal data (Gouget, 2006; D’Elia and Piccolo, 2005; Podani,11

2006; Giordan and Diana, 2011; Jollois and Nadif, 2011; Biernacki and Jacques, 2016; Ranalli and Rocci, 2016; Fernández et12

al., 2016). Nevertheless, when the number of features is large, the clustering of observations can be insufficient to summarize13

the data and a simultaneous clustering of the features could be meaningful.14

In a co-clustering context Matechou et al. (2016) recently proposed an approach relying on the proportional odds model,15

itself assuming that the ordinal response has an underlying continuous latent variable. Unfortunately, the authors did not16

provide any code or package for theirmethod and thus numerical comparisons are not possible. Let notice that the R package17

biclust (Kaiser et al., 2015) proposes several bi-clustering algorithms, whose bi-clustering goal is not the same than co-18

clustering (cf. Fig. 1).19

In this work, we propose a model-based co-clustering algorithm relying on a recent distribution for ordinal data (BOS20

for Binary Ordinal Search model, Biernacki and Jacques (2016)), which has proven its efficiency for modeling and clustering21

ordinal data. One of the main advantage of the BOS model is its parsimony and the significance of its parameters. Indeed,22

in the present work, each co-cluster of data is summarized with only two parameters, one position parameter and one23

precision parameter. Another advantage of the proposed co-clustering model is its ability to take into account missing data24

by estimating them during the inference algorithm. Thus, the proposed co-clustering algorithm can be also used in a matrix25

completion task (see Candès and Recht (2009) for instance).26

The paper is organized as follows. Section 2 proposes the co-clusteringmodelwhereas its inference and tools for selecting27

the number of co-clusters are presented in Section 3. Numerical studies (Section 4) show the efficiency of the proposed28

approach, and two real data applications are presented in Section 5. A discussion concludes the paper in Section 6.29

2. Latent block model for ordinal data30

The dataset is composed of a matrix of n observations (rows or individuals) of d ordinal variables (columns or features):31

x = (xih)1≤i≤n,1≤h≤d. For simplicity, the ordered levels of xih will be numbered {1, . . . ,mh}, and all mh’s are assumed to be32

equal:mh = m (1 ≤ h ≤ d). A natural approach for model-based co-clustering is to consider the latent blockmodel (Govaert33

and Nadif, 2013), which itself relies on a probability distribution for the data. In the following, the BOS model for ordinal34

data is presented, then the latent block model and finally their combination for providing the proposed model.35
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