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a b s t r a c t

Cox regression is one of the most commonly used methods in the analysis of interval-
censored failure time data. In many practical studies, the covariate effects on the failure
time may not be constant over time. Time-varying coefficients are therefore of great
interest due to their flexibility in capturing the temporal covariate effects. To analyze spa-
tially correlated interval-censored time-to-event data with time-varying covariate effects,
a Bayesian approach with dynamic Cox regression model is proposed. The coefficient is
estimated as a piecewise constant function and the number of jump points estimated
from the data. A conditional autoregressive distribution is employed to model the spatial
dependency. The posterior summaries are obtained via an efficient reversible jumpMarkov
chain Monte Carlo algorithm. The properties of our method are illustrated by simulation
studies as well as an application to smoking cessation data in southeast Minnesota.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

In medical studies, it is common that patients are only examined periodically at specific points. In such cases, the event 2

time of interest cannot be observed exactly, but is known to fall between certain visits, i.e., the event time is known to fall 3

within a certain time interval. This type of data is known as interval-censored data. For example, if we are interested in the 4

time to smoking relapse of smokers who have ever quit smoking, but the smokers are monitored on an annual basis, then 5

the exact time to smoking relapse is hard to record. Thus, the data are interval-censored, i.e. the time is only known to fall 6

between two visits. Examples of interval-censored data can be found in De Gruttola and Lagakos (1989), Jewell et al. (1994), 7

and Sun (1996). 8

Different models have been introduced to analyze interval-censored data, among which the proportional hazards (PH) 9

model is the most popular. The PH model, also referred to as the Cox model (Cox, 1972), specifies the multiplicative effect 10

of the covariates on the hazard function of the failure time. Many approaches have been developed under the Cox model 11

over the past several decades (Finkelstein, 1986; Pan, 1999, 2000; Cai and Betensky, 2003). However, they assume that the 12

effect of a risk factor does not change over time. This assumption does not always hold and may lead to biased estimates 13

for covariate effects that very over time. In order to capture the temporal covariate effects, Sinha et al. (1999) treated 14

the unobserved exact times as a latent variable and sampled from their full conditional posterior distribution via Gibbs 15

sampling. Wang et al. (2013) applied reversible jump Markov chain Monte Marlo (MCMC) to automatically determine the 16
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dimension of coefficients as well as the baseline hazard function. However, these methods only considered the case where1

the subjects are independent, which may be violated in many applications.2

Zhang et al. (2017) introduced a shared gamma frailty to model the dependence among individuals within the same3

cluster. However, a limitation is that the model assumes that frailties across clusters are independent, which may not hold4

in many applications. There exists a large body of studies on the spatially correlated time-to-event data, such as Banerjee5

et al. (2003), Banerjee and Carlin (2004), and Pan et al. (2014). However, most studies assume a constant coefficient.6

This study is motivated by a geographically referenced smoking cessation data set consisting of 223 subjects from 517

zip code areas in southeast Minnesota. The objective is to estimate the effect of prognostic factors on the time to relapse8

to smoking, after adjusting for the spatial dependency among clusters (zip code areas). Each zip code area forms a spatial9

cluster. The event of interest is relapse to smoking, which was interval-censored because subjects were only monitored at10

annual visits for 5 years.11

We propose a Bayesian dynamic Cox model to estimate time-varying coefficients for spatially correlated interval-12

censored data. The proposed model contributes to the current literature on interval-censored data in the following ways:13

(a) it allows for a flexible estimation of the baseline hazard as well as the temporal effects of risk factors via a Bayesian14

discretized semi-parametric model; (b) it includes gamma frailties across spatial clusters (based on zip codes) to model15

heterogeneities across clusters; and (c) it includes a conditional autoregressive (CAR) distribution as the prior for the frailties16

to adjust for the spatial correlation across clusters.17

We compare the proposed model with two other commonly employed models: one is with constant coefficients and18

spatially correlated frailties, and the other is with time-varying coefficients and independent frailties. In both simulation19

studies and real data applications, we demonstrate that the proposed model improves the model fitting and leads to better20

estimation for both the dynamic effects of risk factors and the dependence across spatial clusters.21

The remainder of this paper is organized as follows. Section 2 introduces the proposed model and the two comparison22

models. It also discusses the associated likelihood functions for each of the three models. Section 3 specifies the priors23

on the regression coefficients, the frailties, and the other parameters in the models. Section 4 includes posterior inference24

details. Section 5 presents results from simulation studies. Smoking cessation data are analyzed in Section 6. Conclusions25

and discussions are provided in Section 7.26

2. Model specification27

Let Ti,j denote the survival time for the jth subject in the ith cluster, where i = 1, 2, . . . , n and j = 1, 2, . . . ,mi. Consider28

a Cox model with time-varying regression coefficients conditional on a Q -dimensional vector of covariates, xi,j, and the29

unobserved frailty random variable ωi for the ith cluster. The hazard function can be written as30

λ(t|ωi, xi,j) = λ0(t) exp(xTi,jβ(t) + ωi),31

where λ0(.) is an unknown baseline hazard function common to all subjects, xi,j is the Q × 1 covariate vector for the jth32

subject in the ith cluster and β(t) is the Q -dimensional regression coefficient function of main interest. The frailty ωi can be33

either independent or correlated. In this study, we consider three models specified as follows34

Model 1: β(t) is constant, ωi’s are spatially correlated.35

Model 2: β(t) is time-varying, ωi’s are independent.36

Model 3: β(t) is time-varying, ωi’s are spatially correlated.37

For interval-censored data, the unobserved event time Ti,j is located in an observed time interval (Li,j, Ri,j]. The contribu-38

tion of subject j in ith cluster to the observed data likelihood is then39

Pr(Ti,j ∈ (Li,j, Ri,j]|ωi, xi,j) = Pr(Ti,j > Li,j|ωi, xi,j) − Pr(Ti,j > Ri,j|ωi, xi,j).40

Due to the unavailability of the partial likelihood, coefficient estimation is challenging since we have to estimate the
coefficients and the baseline simultaneously (Sun, 2007). In this study, we borrowed the idea of the Bayesian discretized
semiparametric model, which was proposed by Sinha et al. (1999) and also studied by Kim et al. (2007) and Wang et
al. (2013). The basic idea is to generate the augmented event time in its observed interval and compute the estimates of
parameters piecewisely. Once the unobserved event time Ti,j’s are given, the interval-censored data reduce to right-censored
data.We assume that λ0(t) andβ(t) are left continuous step functions, where both the number and locations of the jumps are
random and to be estimated. Let k = 1, 2, . . . , K denote all the ordered grids and 0 = τ0 < τ1 < τ2 < · · · < τK < ∞ be the
corresponding timepoints. Hereweassume the timepoints (τk, k = 1, 2, . . . , K ) contain all potential jumppoints. The length
of each time interval may be taken to be sufficiently small so that the hazard and coefficient functions can be appropriately
estimated. Let dNi,j,k indicate whether or not the event time Ti,j falls within the kth interval, i.e., dNi,j,k = 1(Ti,j ∈ (τk−1, τk]).
Let Yi,j,k be the at-risk variable defined as Yi,j,l = 1 for l < k, Yi,j,l = 0 for l > k, and Yi,j,k = (Ti,j − τk−1)/∆k for l = k, where
∆k = τk − τk−1 is the width of the kth interval. Denote λk = λ0(τk) and βk = β(τk) as the baseline hazard function and the
coefficient function evaluated at each time point. Thus, the augmented likelihood function for jth subject of ith cluster is

ℓi,j
(
Θ|{dNi,j,k, Yi,j,k}

K
k=1, ωi, xi,j

)
=

K∏
k=1

{
λk exp(xTi,jβk + ωi)

}dNi,j,k exp
{
−∆kλk exp(xTi,jβk + ωi)Yi,j,k

}
, (1)
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