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a b s t r a c t

Variogram estimation plays a vastly important role in spatial modeling. Different methods
for variogram estimation can be largely classified into least squaresmethods and likelihood
basedmethods. A general framework to estimate the variogram through a set of estimating
equations is proposed. This approach serves as an alternative approach to likelihood based
methods and includes commonly used least squares approaches as its special cases. The
proposed method is highly efficient as a low dimensional representation of the weight
matrix is employed. The statistical efficiency of various estimators is explored and the lag
effect is examined. An application to a hydrology data set is also presented.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

The variogram is a fundamental tool in the modeling of spatial processes. For a spatial stochastic process Z(s) defined on 2

D ⊂ R2, if it has a constant mean: E(Z(s)) = µ for all s ∈ D, and its variogram 2γ (s1 − s2) ≡ Var(Z(s1)−Z(s2)) for s1, s2 ∈ D 3

only depends on the displacement between the locations, s1 − s2, then Z is intrinsically stationary. A process is isotropic 4

if its variogram is dependent on the absolute distance, not the relative direction, between locations, i.e., 2γ (s1 − s2) = 5

2γ (∥s1 − s2∥) where ∥ · ∥ denotes the Euclidean distance, and geometric anisotropic if Z(Hs) is isotropic for some invertible 6

matrix H ̸= I. The variogram is widely used to quantify the spatial variability of many physical processes and is essential 7

for obtaining accurate spatial predictions. Some examples are frommining (Matheron, 1963; Journel and Huijbregts, 1978), 8

forestry (Moeur, 1993), hydrogeology (Kitanidis, 1997; Yu et al., 2003), soil science (Heuvelink andWebster, 2001; McGrath 9

et al., 2004), epidemiology (Kleinschmidt et al., 2000; Wong et al., 2004), meteorology (Haylock et al., 2008) and many 10

others (Isaaks and Srivastava, 1989; Cressie, 1993;Webster and Oliver, 2007). In practice, the variogram is usually unknown 11

and needs to be estimated from the data. To model the spatial relationships, especially for spatial predictions, it is crucial to 12

obtain variogram estimates with high statistical efficiency and also low variance. 13

A graphical assessment of the variogram estimate can be achieved using a variogram cloud, that is a plot of squared 14

differences of observations versus pair-wise distances. The variogram cloud has the advantage of displaying the individual 15

contributions to the overall variogram from all pair-wise distances (Müller, 1999). Compared to a variogram cloud, the 16

empirical variogram iswidely used in variogram estimation because it ismore robust tomodeling assumptions and provides 17

more information in identifying an appropriate model form for the variogram. The classical empirical variogram estimator 18
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is based on the method of moments (Matheron, 1962),1

2γ̂ (h) =
1

|N(h)|

∑
N(h)

(Z(s1) − Z(s2))2,2

where N(h) = {(s1, s2) ∈ D ⊂ R2
: s1 − s2 = h} with cardinality |N(h)|. To eliminate the constraint of considering pairs of3

sites with exactly h lag apart, somemodifications of the classical empirical variogram are proposed to use a tolerance region4

or group distances into bins (Cressie, 1993). There are also other variations of the empirical variogram to take care of the5

susceptibility to outliers through robust variogram estimators based on |Z(s1) − Z(s2)|1/2 (Cressie and Hawkins, 1980) or6

other highly robust scale estimators (Genton, 1998a).7

Fitting the empirical variogram directly using nonparametric methods may not necessarily produce a valid variogram. In8

practice, variogram estimation is usually done by first assuming a parametric form that is known to be conditionally negative9

definite and then estimating the parameters to ensure that the estimated variogram is close to the empirical variogram of10

the data. Refer to Cressie (1993) for a list of popular choices of variogram models.11

Least squares and likelihood based methods are the two approaches that are commonly adopted for fitting variogram12

models to spatial data. The least squares method fits a parametric model by minimizing a quadratic distance measure13

between the empirical variogram 2γ̂ (h) (or some other nonparametric variogram estimators) and the parametric model14

2γ (h, θ) where θ ∈ Rp denotes p unknown parameters. More specifically, for a variogram estimated at K discrete lags, the15

parameter vector θ is estimated by minimizing16

{2γ̂ − 2γ(θ)}′ V (θ)−1
{2γ̂ − 2γ(θ)},17

where 2γ̂ is a K × 1 vector of the empirical variogram at K lags, V (θ) is a K × K non-negative definite matrix characterizing18

the dependence structure and different variabilities of 2γ̂ among the K lags.19

The weights assigned to different lags are embedded in the inverse matrix V (θ)−1, and how these weights are allocated20

is in fact directly linked with the type of least squares estimation. For example, when the empirical variogram values are21

assumed to be uncorrelated with same variance, V (θ) reduces to the identity matrix, corresponding to having equal weight22

to all lags and leading to the ordinary least squares (OLS) estimate. The weighted least squares (WLS) estimate is when V (θ)23

is chosen to be some diagonal matrix with specified variances along the diagonal; see Cressie (1985) and Genton (1998c),24

among others, for different choices of weights. The generalized least squares (GLS) estimate is when V (θ) is set to be the25

asymptotic covariance matrix of the empirical variogram, i.e., V (θ) = Var(2γ̂), and only assigning equal weight to all pairs26

with equal lag. Zhu and Stein (2002) proposed to define generalized variograms using linear filters where the horizontal,27

vertical and diagonal increments can be treated separately under a variogram setting. Under an increasing domain regime,28

all least squares estimates, including the OLS, WLS and GLS estimates, are consistent and asymptotically normal, with the29

GLS estimates being asymptotically statistically efficient among all (Lahiri et al., 2002). Despite the statistical efficiency of30

the GLS estimates, the facts that GLS requires the full covariance matrix that is difficult to obtain and consists of a nonlinear31

optimizationmakeGLS less appealing to implement in practice.WLS is often employed as an alternative as it is a compromise32

between OLS and GLS.33

Likelihood based methods are convenient tools for variogram estimation when a distributional assumption, usually34

normality, is valid.Maximum likelihood (ML)methods have beendeveloped for stationary isotropic Gaussian processmodels35

for regularly and irregularly spaced locations, and large data sets problem using different approximation methods, many of36

which have been reviewed by Sun et al. (2012). When the mean parameter of the process is unknown and needs to be37

estimated, ML usually underestimates the variability of the process as it assumes the mean parameter is known (Stein,38

1999, Section 6.6). Restrictedmaximum likelihood (REML) is useful for this problem as it maximizes the likelihood for linear39

combinations of the observationswhosemeans are independent of the unknownmeanparameter (Patterson and Thompson,40

1971; Kitanidis, 1983). REML produces estimates with less bias compared to that from the ML estimation, especially when41

the number of parameters is large relative to the sample size (McGilchrist, 1989; Tunnicliffe-Wilson, 1989; Kang et al.,42

2003), and is also less computationally involved in practice. Compared to likelihood based methods, an alternative is via43

estimating equations. For example, for stationary Gaussian processes, Kaufman et al. (2008), Stein (2013) and Sun and44

Stein (2016) proposed different types of biased or unbiased estimating equations for covariance function estimation. In this45

paper, we develop new and flexible unbiased estimating equations to fit variogrammodels. The proposed method provides46

an alternative approach to the likelihood based methods, and includes the commonly used OLS, WLS and GLS as its special47

cases. Our method is highly efficient as a low dimensional representation of the weight matrix is adopted. The asymptotic48

properties of the estimators and the effect of lag set are explored. We illustrate our methodology for both lattice data and49

irregularly spaced data.50

The remainder of the paper is organized as follows. In Section 2, we first describe the estimating equations approach,51

present our low rank approximation procedure, and then demonstrate how this framework can be used to generalize52

many widely used estimators. We end this section by presenting their theoretical properties. We investigate the statistical53

efficiency of different estimators constructed using our approach and examine the lag effect using a series of numerical54

studies and simulations in Section 3. The application of the proposed method is illustrated using a hydrology data set in55

Section 4. We conclude with a discussion of the proposed method.56
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