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a b s t r a c t

It is shown that the Poisson binomial distribution function can be efficiently calculated
using simple convolution based methods. The Poisson binomial distribution describes
how the sum of independent but not identically distributed Bernoulli random variables is
distributed. Due to the intractability of the Poisson binomial distribution function, efficient
methods for computing it have been of particular interest in past Statistical literature.
First, it is demonstrated that simply and directly using the definition of the distribution
function of a sum of random variables can calculate the Poisson binomial distribution
function efficiently. A modified, tree structured Fourier transform convolution scheme
is then presented, which provides even greater gains in efficiency. Both approaches are
shown to outperform the current state of the art methods in terms of accuracy and speed.
The methods are then evaluated on a real data image processing example in order to
demonstrate the efficiency advantages of the proposed methods in practical cases. Finally,
possible extensions for using convolution based methods to calculate other distribution
functions are discussed.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Suppose that
{
Xi

}n
i=1 is a collection of independent, but not necessarily identically distributed Bernoulli(pi) random 2

variables, and we are interested in calculating the distribution function of their sum, Y =
∑

Xi. Known as the Poisson 3

binomial distribution function, this quantity is of particular interest to a variety of fields and applications, and has seen wide 4

use in recent years. For example, it has been used in genetics (Melton et al., 2015), device failure time analysis (Hong and 5

Meeker, 2013), reliability analysis inmeteorological forecasting (DeChant andMoradkhani, 2015), insurance (Pitacco, 2007), 6

item response theory (González et al., 2016), ecology (Calabrese et al., 2014), survey sampling (Chen and Liu, 1997), and even 7

analysis of golf (Elmore and Urbaczewski, 2016). 8

The distribution itself has received significant attention in past statistical literature, for example, Hoeffding (1956), where 9

the focus has primarily been on calculating the cumulative distribution function 10

P(Y ≤ y) =

y∑
s=0

∑
A∈Fs

∏
i∈A

pi
∏
i∈Ac

(1 − pi), (1) 11
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where Fs is defined as the set of all subsets of size s that can be chosen from the set
{
1, 2, . . . , n

}
. It is clear that attempting1

to compute this quantity directly is intractable for even small sample sizes as each Fs contains
(n
s

)
elements, and this issue2

has motivated many interesting works.3

A variety of approximation methods have been proposed, including Poisson approximations (Le Cam et al., 1960; Chen,4

1974; Deheuvels et al., 1986; Wang, 1993; Steele, 1994) and generally more accurate binomial approximations (Choi et al.,5

2002; Ehm, 1991; Soon, 1996; Roos, 2001). Normal approximations have also been used (Berry, 1941; Mikhailov, 1994), of6

which perhaps the most effective is the refined normal approximation of Volkova (1996).7

Recursive algorithms for exact calculation have also been developed (Wadycki et al., 1973; Barlow and Heidtmann, 1984;8

Radke and Evanoff, 1994; Chen et al., 1994; Belfore, 1995). While recursive algorithms are capable of computing the exact9

distribution function, they can have expensive memory costs, and some can experience issues of numerical stability. A more10

in depth treatment of some recursive algorithms is provided in Hong (2013).11

Recently, two other exactmethods have been proposed by Fernández andWilliams (2010) andHong (2013). In Fernández12

and Williams (2010) a closed form expression for the Poisson binomial distribution function is derived using polynomial13

interpolation and discrete Fourier transforms. Hong (2013) provides a simpler derivation using characteristic functions, and14

also develops an efficient algorithm to evaluate the distribution function, which is called DFT-CF. A comparison of DFT-CF15

and past methods is also provided, which concludes that DFT-CF is recommended for general computation of the Poisson16

binomial distribution function. In this sense, the DFT-CF algorithm is the current state of the art approach for efficient and17

exact computation.18

Curiously, we have observed that directly calculating the Poisson binomial distribution function following only the19

convolution definition of the distribution function of the sum of random variables is more efficient than the DFT-CF20

algorithm. In this paper we demonstrate this fact and provide intuition explaining why direct computation in this way21

could be efficient. This result motivates an even faster, binary tree structured, fast Fourier transform (FFT) algorithm based22

on the convolution definition, which can be seen as a specialized version of the algorithm in Ruckdeschel and Kohl (2014).23

The algorithms are then compared in a real data image processing example, which further demonstrates the effectiveness24

of the proposed methods.25

2. Calculating the Poisson binomial distribution function26

2.1. Direct convolution27

Suppose that we have two random variables, X1 and X2, and denote their sum by Y . The density function of Y is calculated28

by the convolution of the individual densities of X1 and X2 using the well known formula29

P(X1 + X2 = k) = (f1 ∗ f2)(k) =

k∑
i=0

f1(i) · f2(k − i). (2)30

Of course, this can easily be extended to any collection of random variables,
{
Xi

}n
i=1, so that the density function of their sum31

is f1 ∗ ... ∗ fn. For two Bernoulli(pi) random variables, calculating (2) is equivalent to calculating the linear convolution of two32

sequences, P1 and P2, where each Pi is a vector so that Pi = [1 − pi, pi]. It is easy to see that this can similarly be extended33

to any number of Bernoulli(pi) random variables so that the density function of their sum is given by P1 ∗ ... ∗ Pn. Thus, the34

density function of Y can be found by first calculating P1 ∗ P2, and then sequentially convolving the resulting sequence with35

each remaining Pi until Pn has been reached. Finally, the distribution function of Y can be quickly calculated by taking a36

cumulative summation over Pn. Algorithm 1 describes the process in more detail, and [j] is used to denote the jth element of37

a vector.38

To gain some intuition as towhy this naivemethod of computation could be efficient, consider first calculating the density39

function when n = 2, which would require computing40

P1 ∗ P2 = [(1 − p1)(1 − p2), (1 − p1)p2 + (1 − p2)p1, p1p2]. (3)41

For larger n, we would then convolve P3 with (3) and continue until all Pi have been incorporated. The jth step of the42

process involves convolving a length 2 sequence with a sequence of length j + 1. This, coupled with the fact that 1 − pi43

must be calculated for each i, makes it clear that 3
2 (n

2
+ n − 1) arithmetic operations will be required and the procedure44

will have a time complexity of O(n2). The key, however, is that all of the required operations will be very fast as only45

addition and multiplication are needed. Finally, we note that due to its simplicity, directly calculating the convolution is46

easily implemented in any programming language. We will refer to this method of computation as DC.47

2.2. Divide and conquer FFT tree convolution48

One obvious way to try to improve on the direct convolution approach is to use the well known convolution theorem49

which states that50

F(f1 ∗ f2) = F(f1) · F(f2) and thus f1 ∗ f2 = F−1(F(f1) · F(f2)), (4)51
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