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a b s t r a c t

A new model-free screening approach called as the slicing fused mean–variance filter is
proposed for ultrahigh dimensional data analysis. The newmethod has the following mer-
its: (i) its implementation does not require specifying a regression form of predictors and
response variables; (ii) it can deal with various types of covariates and response variables
including continuous, discrete and categorical variables; (iii) it works well even when
the covariates/random errors are heavy-tailed, or the predictors are strongly correlated,
or there are outliers; (iv) it is unsensitive to the slicing scheme. Under some regularity
conditions, the sure screening and ranking consistency properties are established for
the proposed procedure without assuming any moment conditions on the predictors.
Simulation studies are conducted to investigate the finite sample performance of the
proposed procedure. A real data example is illustrated to the proposed procedure.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Ultrahigh dimensional data are often encountered in genomics, bioinformatics, proteomics and economics. In ultrahigh 2

dimensional data analysis, it is commonly assumed that the number of explanatory variables may grow exponentially with 3

sample size but only a small number of explanatory variables contribute to response variable. To this end, various model- 4

based feature screening approaches have been proposed to simultaneously estimate a sparsemodel and select the significant 5

predictors for ultrahigh dimensional data. For example, Fan and Lv (2008) proposed a sure independent screening (SIS) 6

procedure and an iterated sure independence screening (ISIS) procedure in linear regressionmodelswithGaussian covariates 7

and responses by ranking themarginal Pearson correlations; Fan and Song (2010) extended the SIS procedure to generalized 8

linear models, and presented a more general version of the independent learning by ranking the maximum marginal 9

likelihoods or the maximum marginal likelihood estimates; Fan et al. (2011) developed a nonparametric independence 10

screening (NIS) method by ranking the importance of predictors via the magnitude of nonparametric components in sparse 11

ultrahigh dimensional additive models; Chang et al. (2013) proposed a screening method for linear regression models and 12

generalized linear models based on the marginal empirical likelihood ratio. The aforementioned screening methods only 13

workwellwhen the positedworkingmodels are correctly specified (Zhu et al., 2011), but they performpoorly in the presence 14

of model misspecification. 15

To address the aforementioned issue for ultrahigh dimensional data analysis, some model-free feature screening 16

procedures have been developed in recent years. For example, Zhu et al. (2011) proposed a sure independent ranking 17

and screening (SIRS) procedure to screen the significant explanatory variables under a unified model framework, which 18

includes a lot of widely used parameter and nonparametric models; Li et al. (2012a, b) proposed a robust rank correlation 19

screening (RCS) procedure based on the Kendall τ correlation coefficient between response and explanatory variable; 20
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Li et al. (2012a, b) developed a SIS procedure using the distance correlation between two random variables to replace1

the Pearson correlation in marginal correlation screening; He et al. (2013) presented a quantile-adaptive-based nonlinear2

independence screening procedure (QAS); Mai and Zou (2013) proposed a sure feature screening procedure based on the3

Kolmogorov distance for binary classification problems, but the Kolmogorov filter screening is unavailable when response4

variable takes more than two values. Recently, Cui et al. (2015) developed a new marginal feature screening procedure for5

ultrahigh dimensional discriminant analysis problem based on the empirical conditional distribution function (MVS), which6

is easily implemented without involving the numerical optimization and is robust to model misspecification, heavy-tailed7

distributions of explanatory variables and outliers, but they only studied the scenario that response variable is categorical and8

explanatory variables are continuous. To address the shortcomings of Mai and Zou (2013) and Cui et al. (2015), Mai and Zou9

(2015) proposed a nonparametric model-free screening procedure based on the fused Kolmogorov filter (FKF) together with10

the slicing technique. The FKF screening procedure works well for many types of covariates and response variable including11

continuous, discrete and categorical variables, and is invariant under univariate monotone transformation of variables. But12

the FKF screening procedure is computationally heavy in that calculating the Kolmogorov–Smirnov statistic involves the13

numerical optimization problem.14

In this article, our main purpose is to develop an effective and computationally feasible feature screening procedure15

for ultrahigh dimensional data analysis. The proposed screening procedure can be available for various types of covariates16

and response variable including discrete, categorical and continuous variables, and is robust to model misspecification,17

outliers and heavy-tailed distributions of explanatory variables, and is alsomodel-freewithout specifying a regressionmodel18

of explanatory variables and response variable and is easily implemented without involving the numerical optimization19

problem. To this end, we propose a marginal slicing feature screening procedure, which is referred to as the slicing fused20

mean–variance (FMV) screening, based on the empirical conditional distribution function of explanatory variable given21

response variable.We study its asymptotic properties and show the sure screening and ranking consistency properties under22

some regularity conditions.23

The rest of this article is organized as follows. The slicing FMV screening method is introduced in Section 2. Section 324

studies its theoretical properties under some regularity conditions. Simulation studies are conducted to investigate the finite25

sample performance of the proposedmethod in Section 4. In Section 5, a real data example is used to illustrate the proposed26

screening procedure. Technical details are presented in the Appendix.27

2. Method28

2.1. Slicing fused mean–variance screening method29

Let Y be the categorical response with R classes {y1, . . . , yR}, and X be the continuous explanatory variable with the30

support RX . Define F (x) = Pr(X ≤ x) as the unconditional distribution function of X , and Fr (x) = Pr(X ≤ x|Y = yr ) as31

the conditional distribution function of X given Y = yr . An explanatory variable X is independent of response variable Y if32

and only if Fr (x) = F (x) for any x ∈ RX and r = 1, . . . , R. Due to the aforementioned fact, Cui et al. (2015) considered the33

following index34

MV(X |Y ) = EX [varY {F (X |Y )}]35

formeasuring thedependence betweenX andY , and showed thatMV(X |Y )=
∑R

r=1pr
∫
{Fr (x)−F (x)}2dF (x) andMV(X |Y ) = 036

if and only if X and Y are statistically independent, where F (x|Y ) = Pr(X ≤ x|Y ) and pr = Pr(Y = yr ) > 0 for r = 1, . . . , R.37

Given the observed data set {(Xi, Yi) : i = 1, . . . , n}, an empirical estimator of MV(X |Y ) is given by38

M̂V(X |Y ) =
1
n

R∑
r=1

n∑
j=1

p̂r{F̂r (Xj) − F̂ (Xj)}2,39

where p̂r =
1
n

∑n
i=1I(Yi = yr ) in which I(·) is an indicative function, F̂ (x) =

1
n I(Xi ≤ x), and F̂r (x) =

1
n

∑n
i=1I(Xi ≤ x, Yi =40

yr )/p̂r .41

Motivated by Cui et al. (2015), our main purpose is to extend their developed method for a categorical response to a42

continuous response variable or a general categorical response variable Y taken countable values (e.g., Poisson random43

variable) with the support RY . To this end, we define the following index44

MVj = EXj [varY {F (Xj|Y )}]

=

∫∫
{Fj(x|Y = y) − Fj(x)}2dFj(x)dFY (y)

(2.1)45

for measuring the dependence between Xj and Y , where FY (y) = Pr(Y ≤ y), Fj(x) = Pr(Xj ≤ x), and Fj(x|Y = y) represents46

the conditional distribution function of Xj given Y evaluated at Y = y. It is easily shown that MVj = 0 if and only if47

Xj is independent of Y , which implies that we can use MVj to identify the significant explanatory variables in ultrahigh48

dimensional data analysis.49

It is rather difficult to compute MVj when Fj(x) or FY (y) are unknown. Following the widely adopted idea, we use its50

empirical version to estimate MVj. Thus, when Y is a categorical response having a growing number of classes in the order51
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