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a b s t r a c t

The cumulative incidence function quantifies the probability of failure over time due
to a specific cause for competing risks data. The generalized semiparametric regression
models for the cumulative incidence functions with missing covariates are investigated.
The effects of some covariates aremodeled as nonparametric functions of timewhile others
are modeled as parametric functions of time. Different link functions can be selected to
add flexibility in modeling the cumulative incidence functions. The estimation procedures
based on the direct binomial regression and the inverse probability weighting of complete
cases are developed. This approachmodifies the full data weighted least squares equations
by weighting the contributions of observed members through the inverses of estimated
sampling probabilities which depend on the censoring status and the event types among
other subject characteristics. The asymptotic properties of the proposed estimators are
established. The finite-sample performances of the proposed estimators and their relative
efficiencies under different two-phase sampling designs are examined in simulations. The
methods are applied to analyze data from the RV144 vaccine efficacy trial to investigate
the associations of immune response biomarkers with the cumulative incidence of HIV-1
infection.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Competing risks data are often encountered in medical researches where study participants are exposed to two or 2

more mutually exclusive causes of failure. Because of the inherited nonidentifiability problem with the competing risks 3

data, the cause-specific hazard function and cumulative incidence function have been used as the primary quantities for 4

analyzing competing risks data (Tsiatis, 1978; Kalbfleisch and Prentice, 1980). The cause-specific hazard function measures 5

the instantaneous failure risk due to a specific cause while the cumulative incidence function describes the probability 6

distribution for a specific cause of failure, both are the measurements of the crude failure risk in the presence of all other 7

risks. The two measures provide different perspectives for cause-specific failure times, cf. Fine and Gray (1999), Katsahian 8

et al. (2006) and Latouche et al. (2007). 9

The statistical methods developed for failure time hazard regression models such as Cox (1975), Lin and Ying (1994) 10

and Scheike and Zhang (2002) can often be utilized directly formodeling the cause-specific hazard functions. The cumulative 11
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incidence function Fj(t) for cause j relates the cause-specific hazard function λj(t) through the simple formula Fj(t) =1 ∫ t
0 λj(s)ST (s) ds, where ST (t) is the survival function of T of all causes. Cumulative incidence functions can be estimated2

throughmodeling the cause-specific hazard functions for all causes (Cheng et al., 1988; Shen andCheng, 1999). This approach3

provides a straightforward way to estimate cumulative incidence functions, but the effects of covariates on the cumulative4

incidence functions are not clear. In addition, indirect modeling Fj(t) through the cause-specific hazard functions requires5

setting up models for the cause-specific hazard functions of all causes. Alternative approaches that directly model the6

cumulative incidence functions have been studied by Klein and Andersen (2005) and Scheike et al. (2008). Direct modeling7

of the cumulative incidence functions allows direct evaluation of covariate effects on the probability of failure over time for8

a specific cause without the need to model for other causes.9

This paper investigates the generalized semiparametric additive model for cumulative incidence functions with missing10

covariate values. This research is motivated by RV144, a preventive HIV-1 vaccine efficacy trial. RV144 randomized 16,39511

HIV-1 negative volunteers in 1:1 allocation to receive vaccine or placebo and followed them for 42months for occurrence of12

the primary study endpoint of HIV-1 infection (Rerks-Ngarm et al., 2009), showing partial beneficial efficacy of the vaccine13

to lower the incidence of HIV-1 infection. An objective of RV144 is to examine the effects of certain biomarkers measuring14

immune responses to vaccination on the cumulative probability of becoming infected with specific genetic types of HIV-115

(the competing risks of failure). The immune response biomarkers were measured from vaccine recipients at the Week16

26 visit, two weeks after the vaccination series. Since the rate of HIV-1 infection was low (fewer than 1% of participants17

acquired HIV), it would be very expensive and unnecessary tomeasure the biomarkers from all vaccine recipients. A classical18

case-cohort design would measure the biomarkers from all participants who experience the event of interest after Week 2619

(HIV-1 infection) and from a relatively small random sample from the original cohort of vaccine recipients (Prentice, 1986).20

However, since the immune response biomarkers were not measured from all failure events after Week 26, we follow the21

generalized case-cohort design, which is in the form of two-phase sampling data (Breslow et al., 2009a, b; Haneuse et al.,22

2011), where the phase-one data are variables measured from all participants and the phase-two data are measured in23

random samples (without replacement or Bernoulli) of participants within each level of a stratification variable defined by24

the phase-one data. The case-cohort or two-phase sampling of covariate data are common forms of missing covariates. In25

the application section we describe the specific genetic types of HIV-1 infection that constitute the failure types of interest.26

Our estimation procedure for generalized semiparametric additive models is based on the direct binomial regression27

model of Scheike et al. (2008) using an inverse probability weighting of complete cases (IPW) estimating equation. This28

approachmodified the full dataweighted least squares equations byweighting the contributions fromparticipantswith fully29

observed data by the inverses of the estimated sampling probabilities. Under the competing risks situations, the sampling30

probabilities may be different for different types of events. Previous related methodological research includes the following31

papers. Kang and Cai (2009) developed methods for fitting failure time data from case-cohort studies with multiple disease32

outcomes under a marginal proportional hazards model. Kang et al. (2013) developed a weighted estimating equations33

approach for the marginal additive hazards regression model for case-cohort studies with multiple disease outcomes. Sun34

et al. (2017) studied a semiparametric additive hazards model for case-cohort and two-phase sampling data. We transport35

this approach to develop an IPW estimating equations procedure for the generalized semiparametric additive model in36

Section 2. We develop asymptotic properties of the proposed IPW estimator in Section 3. The finite-sample performances of37

the IPW estimators and their relative efficiencies are examined in Section 4 for different two-phase sampling designs. The38

proposedmethod is applied to analyze data from the RV144 vaccine efficacy trial in Section 5.1 to investigate the association39

of antibody responseswith the vaccine on the cumulative incidence of infectionwithHIVs of specific genetic types of interest.40

An additional simulation study based on the RV144 data is conducted in Section 5.2 to examine the performance of the IPW41

methodwhen the sample size is very large, and both the event rate and sampling percentage of phase-two variables are very42

small. Proofs of the asymptotic results are given in the Appendix.43

2. Estimation of the semiparametric model for the cumulative incidence function with missing covariates44

2.1. Generalized semiparametric model and missing data45

Let Ti be the failure time and Ji ∈ {1, 2, . . . , k} denote the k different failure types for the ith subject. Assume that cause46

Ji = 1 is the primary cause of interest and Ji > 1 for other competing causes. LetXi = (1, Xi1, . . . , Xip)T and Zi = (Zi1, . . . , Ziq)T47

be the (p+1)- and q-dimensional possibly time-dependent covariate vectors, respectively. Let Ci be the right censoring time.48

Let ∆i = I(Ti ≤ Ci) be an indicator for uncensored failure time. The observed independent identically distributed (i.i.d.)49

competing risks data can be represented by Yi = (Xi, Zi, T̃i, J̃i) for i = 1, 2, . . . , n, where T̃i = min(Ti, Ci) and J̃i = Ji∆i. The50

value J̃i = Ji indicates that the failure time is observed at T̃i and the cause of failure is of type Ji. Let [0, τ ] be the follow-up51

period during which data are collected. We assume that the (Ti, Ji) are independent of the Ci given the covariates (Xi, Zi). The52

covariates of subject i are only meaningful in the time interval when the subject is at-risk and still in the study, i.e., t ≤ T̃i.53

Let F1(t; Xi, Zi) = P(Ti ≤ t, Ji = 1|Xi, Zi) be the conditional cumulative incidence function given covariates (Xi, Zi). We54

consider the following generalized semiparametric model:55

F1(t; Xi, Zi) = h{XT
i η(t), g(γ , Zi, t)} (1)56
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